Control of the vorticity mode in the linearized Euler equations for hybrid aeroacoustic prediction

The issue of vorticity mode perturbation in Linearized Euler Equations (LEE) is addressed in this paper. We chose to tackle this question by the point of view of source term formulation. It is numerically shown that the use of a rotational free acoustic source term significantly reduces the development of the hydrodynamic mode. In accordance with the theory, the proposed source term lead to a quasi total absence of vorticity mode in a spatially uniform mean flow, and a strong reduction in a sheared mean flow.

[1]  Xavier Gloerfelt,et al.  Illustration of the Inclusion of Sound-Flow Interactions in Lighthill's Equation , 2003 .

[2]  C. Bogey,et al.  Computation of Flow Noise Using Source Terms in Linearized Euler's Equations , 2000 .

[3]  Franck Nicoud,et al.  Conservative High-Order Finite-Difference Schemes for Low-Mach Number Flows , 2000 .

[4]  Christophe Bogey,et al.  Calcul direct du bruit aérodynamique et validation de modèles acoustiques hybrides , 2000 .

[5]  J. Hardin,et al.  An acoustic/viscous splitting technique for computational aeroacoustics , 1994 .

[6]  C. Tam,et al.  RADIATION AND OUTFLOW BOUNDARY CONDITIONS FOR DIRECT COMPUTATION OF ACOUSTIC AND FLOW DISTURBANCES IN A NONUNIFORM MEAN FLOW , 1996 .

[7]  W. Schröder,et al.  Acoustic perturbation equations based on flow decomposition via source filtering , 2003 .

[8]  M. Lighthill On sound generated aerodynamically I. General theory , 1952, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[9]  Christophe Bailly,et al.  Contributions of Computational Aeroacoustics to Jet Noise Research and Prediction , 2004 .

[10]  S. Lele Compact finite difference schemes with spectral-like resolution , 1992 .

[11]  P. Morris,et al.  Calculation of sound propagation in nonuniform flows: Suppression of instability waves , 2004 .

[12]  H. S. Ribner,et al.  Effects of jet flow on jet noise via an extension to the Lighthill model , 1996, Journal of Fluid Mechanics.

[13]  C. Bailly,et al.  Numerical Solution of Acoustic Propagation Problems Using linearized Euler's Equations* , 2000 .

[14]  Andrew W. Cook,et al.  Direct Numerical Simulation of a Turbulent Reactive Plume on a Parallel Computer , 1996 .

[15]  James J. Riley,et al.  Direct numerical simulations of a reacting mixing layer with chemical heat release , 1985 .

[16]  O. M. Phillips,et al.  On the generation of sound by supersonic turbulent shear layers , 1960, Journal of Fluid Mechanics.

[17]  M. E. Goldstein,et al.  A generalized acoustic analogy , 2003, Journal of Fluid Mechanics.

[18]  Meng Wang,et al.  COMPUTATIONAL PREDICTION OF FLOW-GENERATED SOUND , 2006 .

[19]  Véronique Fortuné,et al.  Noise radiated by a non-isothermal, temporal mixing layer , 2005 .

[20]  Élisabeth Longatte Modélisation de la propagation et de la génération du bruit au sein des écoulements turbulents internes , 1998 .

[21]  Jung Hee Seo,et al.  Linearized perturbed compressible equations for low Mach number aeroacoustics , 2006, J. Comput. Phys..

[22]  L. Kovasznay,et al.  Non-linear interactions in a viscous heat-conducting compressible gas , 1958, Journal of Fluid Mechanics.

[23]  H. S. Ribner,et al.  The Generation of Sound by Turbulent Jets , 1964 .

[24]  Jean-Christophe Valière,et al.  An aeroacoustic hybrid approach for non‐isothermal flows at low Mach number , 2004 .