Vertical collapse of a cytolysin prepore moves its transmembrane β‐hairpins to the membrane

[1]  J. Rossjohn,et al.  The Identification and Structure of the Membrane-spanning Domain of the Clostridium septicum Alpha Toxin* , 2004, Journal of Biological Chemistry.

[2]  R. Tweten,et al.  Assembly and Topography of the Prepore Complex in Cholesterol-dependent Cytolysins* , 2003, Journal of Biological Chemistry.

[3]  E. Gouaux,et al.  Arresting and releasing Staphylococcal α‐hemolysin at intermediate stages of pore formation by engineered disulfide bonds , 2003, Protein science : a publication of the Protein Society.

[4]  R. Tweten,et al.  Structural insights into the membrane-anchoring mechanism of a cholesterol-dependent cytolysin , 2002, Nature Structural Biology.

[5]  S. Zakharov,et al.  Colicin crystal structures: pathways and mechanisms for colicin insertion into membranes. , 2002, Biochimica et biophysica acta.

[6]  H. Higuchi,et al.  Controlling pore assembly of staphylococcal γ‐haemolysin by low temperature and by disulphide bond formation in double‐cysteine LukF mutants , 2002, Molecular microbiology.

[7]  D. Czajkowsky,et al.  Monomer-Monomer Interactions Drive the Prepore to Pore Conversion of a β-Barrel-forming Cholesterol-dependent Cytolysin* , 2002, The Journal of Biological Chemistry.

[8]  H. Bayley,et al.  Stochastic sensors inspired by biology , 2001, Nature.

[9]  R. Tweten,et al.  β-Barrel Pore-Forming Toxins: Intriguing Dimorphic Proteins† , 2001 .

[10]  J. Rossjohn,et al.  Arresting Pore Formation of a Cholesterol-dependent Cytolysin by Disulfide Trapping Synchronizes the Insertion of the Transmembrane β-Sheet from a Prepore Intermediate* , 2001, The Journal of Biological Chemistry.

[11]  R. Tweten,et al.  Beta-barrel pore-forming toxins: intriguing dimorphic proteins. , 2001, Biochemistry.

[12]  M. Parker,et al.  The cholesterol-dependent cytolysins. , 2001, Current topics in microbiology and immunology.

[13]  F. Goot Pore-Forming Toxins , 2001, Current Topics in Microbiology and Immunology.

[14]  R. Tweten,et al.  Mechanism of membrane insertion of a multimeric beta-barrel protein: perfringolysin O creates a pore using ordered and coupled conformational changes. , 2000, Molecular cell.

[15]  J. Pedelacq,et al.  Crystal structure of the F component of the Panton-Valentine leucocidin. , 2000, International journal of medical microbiology : IJMM.

[16]  Piotr E. Marszalek,et al.  Stretching single molecules into novel conformations using the atomic force microscope , 2000, Nature Structural Biology.

[17]  Ami Chand,et al.  Probing protein–protein interactions in real time , 2000, Nature Structural Biology.

[18]  R. Tweten,et al.  The mechanism of pore assembly for a cholesterol-dependent cytolysin: formation of a large prepore complex precedes the insertion of the transmembrane beta-hairpins. , 2000, Biochemistry.

[19]  J. Zlatanova,et al.  Single molecule force spectroscopy in biology using the atomic force microscope. , 2000, Progress in biophysics and molecular biology.

[20]  Z. Shao,et al.  Atomic force microscopy in structural biology: from the subcellular to the submolecular. , 2000, Journal of electron microscopy.

[21]  J. Rossjohn,et al.  The Mechanism of Membrane Insertion for a Cholesterol-Dependent Cytolysin A Novel Paradigm for Pore-Forming Toxins , 1999, Cell.

[22]  R. Collier,et al.  Anthrax protective antigen: prepore-to-pore conversion. , 1999, Biochemistry.

[23]  H. Saibil,et al.  Two Structural Transitions in Membrane Pore Formation by Pneumolysin, the Pore-Forming Toxin of Streptococcus pneumoniae , 1999, Cell.

[24]  D. Czajkowsky,et al.  The vacuolating toxin from Helicobacter pylori forms hexameric pores in lipid bilayers at low pH. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[25]  Kenji Yokota,et al.  Crystal structure of Staphylococcal LukF delineates conformational changes accompanying formation of a transmembrane channel , 1999, Nature Structural Biology.

[26]  J. Rossjohn,et al.  Identification of a membrane-spanning domain of the thiol-activated pore-forming toxin Clostridium perfringens perfringolysin O: an alpha-helical to beta-sheet transition identified by fluorescence spectroscopy. , 1998, Biochemistry.

[27]  N. Crickmore,et al.  Bacillus thuringiensis and Its Pesticidal Crystal Proteins , 1998, Microbiology and Molecular Biology Reviews.

[28]  M. Nakamura,et al.  Contribution of tryptophan residues to the structural changes in perfringolysin O during interaction with liposomal membranes. , 1998, Journal of biochemistry.

[29]  Z. Shao,et al.  Staphylococcal alpha-hemolysin can form hexamers in phospholipid bilayers. , 1998, Journal of molecular biology.

[30]  Michael W Parker,et al.  Structure of a Cholesterol-Binding, Thiol-Activated Cytolysin and a Model of Its Membrane Form , 1997, Cell.

[31]  R. Liddington,et al.  Crystal structure of the anthrax toxin protective antigen , 1997, Nature.

[32]  B. Kagan,et al.  Generation of a membrane‐bound, oligomerized pre‐pore complex is necessary for pore formation by Clostridium septicum alpha toxin , 1997, Molecular microbiology.

[33]  J. Gouaux,et al.  Structure of Staphylococcal α-Hemolysin, a Heptameric Transmembrane Pore , 1996, Science.

[34]  M. Billeter,et al.  MOLMOL: a program for display and analysis of macromolecular structures. , 1996, Journal of molecular graphics.

[35]  H. Bayley,et al.  Staphylococcal alpha-toxin, streptolysin-O, and Escherichia coli hemolysin: prototypes of pore-forming bacterial cytolysins , 1996, Archives of Microbiology.

[36]  Z. Shao,et al.  Cryo atomic force microscopy: a new approach for biological imaging at high resolution. , 1995, Biochemistry.

[37]  H. Hansma,et al.  Biomolecular imaging with the atomic force microscope. , 1994, Annual review of biophysics and biomolecular structure.

[38]  M. Thelestam,et al.  The projection structure of Perfringolysin O (Clostridium perfringens θ‐toxin) , 1993 .

[39]  M. Thelestam,et al.  The projection structure of perfringolysin O (Clostridium perfringens theta-toxin). , 1993, FEBS letters.

[40]  H. Bayley,et al.  Assembly of the oligomeric membrane pore formed by Staphylococcal alpha-hemolysin examined by truncation mutagenesis. , 1992, The Journal of biological chemistry.

[41]  E. Sackmann,et al.  Structure of an adsorbed dimyristoylphosphatidylcholine bilayer measured with specular reflection of neutrons. , 1991, Biophysical journal.

[42]  M. Bloom,et al.  Physical properties of single phospholipid bilayers adsorbed to micro glass beads. A new vesicular model system studied by 2H-nuclear magnetic resonance. , 1990, Biophysical journal.

[43]  J. L. Smith,et al.  Crystal structure of core streptavidin determined from multiwavelength anomalous diffraction of synchrotron radiation. , 1989, Proceedings of the National Academy of Sciences of the United States of America.