Sensor placement for ballistic missile localization using evolutionary algorithms

Efficient localization of a ballistic missile is an important task in missile defense problems. This paper formulates and solves the sensor placement problem for efficient estimation of the missile location. The first part of this paper develops a mathematical framework for the localization of the missile using multiple sensors based on Cramer-Rao lower bound (CRLB) analysis. We derive the Fisher information matrix to facilitate the evaluation of estimation accuracy. The second part of the paper presents an evolutionary algorithm for obtaining the sensor placements. Simulation results show that the evolutionary algorithm outperforms a greedy sensor placement algorithm and obtains sensor placements with very low estimation error.

[1]  S. Sitharama Iyengar,et al.  Sensor placement for grid coverage under imprecise detections , 2002, Proceedings of the Fifth International Conference on Information Fusion. FUSION 2002. (IEEE Cat.No.02EX5997).

[2]  Yaakov Bar-Shalom,et al.  Ballistic missile track initiation from satellite observations , 1994, Defense, Security, and Sensing.

[3]  D. D. Mueller,et al.  Fundamentals of Astrodynamics , 1971 .

[4]  Parameswaran Ramanathan,et al.  Sensor Deployment Strategy for Detection of Targets Traversing a Region , 2003, Mob. Networks Appl..

[5]  Yaakov Bar-Shalom,et al.  Passive ranging of a low observable ballistic missile in a gravitational field , 2001 .

[6]  Sartaj Sahni,et al.  Algorithms for Wireless Sensor Networks , 2005, Int. J. Distributed Sens. Networks.

[7]  Ingo Rechenberg,et al.  Evolutionsstrategie : Optimierung technischer Systeme nach Prinzipien der biologischen Evolution , 1973 .

[8]  S. Sivananthan,et al.  Radar power multiplier for acquisition of low observables using an ESA radar , 2001 .

[9]  William E. Hart,et al.  Discrete sensor placement problems in distribution networks , 2005, Math. Comput. Model..

[10]  H. V. Trees Detection, Estimation, And Modulation Theory , 2001 .

[11]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[12]  W. Vent,et al.  Rechenberg, Ingo, Evolutionsstrategie — Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. 170 S. mit 36 Abb. Frommann‐Holzboog‐Verlag. Stuttgart 1973. Broschiert , 1975 .

[13]  Ivan Zelinka,et al.  Relay Node Placement in Energy-Constrained Networks using SOMA Evolutionary Algorithm , 2006, Artificial Intelligence and Applications.

[14]  M. Melamed Detection , 2021, SETI: Astronomy as a Contact Sport.