Identification, structural and pharmacological characterization of τ-CnVA, a conopeptide that selectively interacts with somatostatin sst3 receptor.

[1]  R. Stöcklin,et al.  Large-scale discovery of conopeptides and conoproteins in the injectable venom of a fish-hunting cone snail using a combined proteomic and transcriptomic approach. , 2012, Journal of Proteomics.

[2]  David J Craik,et al.  Therapeutic potential of conopeptides. , 2012, Future medicinal chemistry.

[3]  R. Stöcklin,et al.  Molecular Phylogeny, Classification and Evolution of Conopeptides , 2012, Journal of Molecular Evolution.

[4]  Vladimir B. Bajic,et al.  Conotoxins that Confer Therapeutic Possibilities , 2012, Marine drugs.

[5]  Frédérique Lisacek,et al.  ConoDictor: a tool for prediction of conopeptide superfamilies , 2012, Nucleic Acids Res..

[6]  I. Vetter,et al.  Conus Venom Peptide Pharmacology , 2012, Pharmacological Reviews.

[7]  G. Mourier,et al.  G protein-coupled receptors, an unexploited animal toxin targets: Exploration of green mamba venom for novel drug candidates active against adrenoceptors. , 2012, Toxicon : official journal of the International Society on Toxinology.

[8]  K. Näreoja,et al.  Selective targeting of G‐protein‐coupled receptor subtypes with venom peptides , 2012, Acta physiologica.

[9]  M. Remm,et al.  High-resolution picture of a venom gland transcriptome: case study with the marine snail Conus consors. , 2012, Toxicon : official journal of the International Society on Toxinology.

[10]  D. Craik,et al.  Conopeptide characterization and classifications: an analysis using ConoServer. , 2010, Toxicon : official journal of the International Society on Toxinology.

[11]  B. Olivera,et al.  Natural products and ion channel pharmacology. , 2010, Future medicinal chemistry.

[12]  J. Pin,et al.  A virtual screening hit reveals new possibilities for developing group III metabotropic glutamate receptor agonists. , 2010, Journal of medicinal chemistry.

[13]  Z. Mc,et al.  The significance of new somatostatin analogs as therapeutic agents. , 2009 .

[14]  R. Stöcklin,et al.  Marine snail venoms: use and trends in receptor and channel neuropharmacology. , 2009, Current opinion in pharmacology.

[15]  C. Fruchart-Gaillard,et al.  Muscarinic toxins: tools for the study of the pharmacological and functional properties of muscarinic receptors , 2009, Journal of neurochemistry.

[16]  David Fenyö,et al.  Rapid sensitive analysis of cysteine rich peptide venom components , 2009, Proceedings of the National Academy of Sciences.

[17]  G. Bulaj,et al.  Conus venoms - a rich source of peptide-based therapeutics. , 2008, Current pharmaceutical design.

[18]  D. Craik,et al.  Conopressin-T from Conus tulipa Reveals an Antagonist Switch in Vasopressin-like Peptides* , 2008, Journal of Biological Chemistry.

[19]  A. Xu,et al.  Isolation and characterization of a T-superfamily conotoxin from Conus litteratus with targeting tetrodotoxin-sensitive sodium channels , 2007, Peptides.

[20]  C. Chi,et al.  Identification of six novel T-1 conotoxins from Conus pulicarius by molecular cloning , 2007, Peptides.

[21]  P. Balaram,et al.  Sequencing of T-superfamily conotoxins from Conus virgo: Pyroglutamic acid identification and disulfide arrangement by MALDI mass spectrometry , 2007, Journal of the American Society for Mass Spectrometry.

[22]  F. Marí,et al.  A vasopressin/oxytocin-related conopeptide with γ-carboxyglutamate at position 8 , 2007 .

[23]  T. Yaksh,et al.  An Assessment of the Antinociceptive Efficacy of Intrathecal and Epidural Contulakin-G in Rats and Dogs , 2007, Anesthesia and analgesia.

[24]  Steven Edward Kern,et al.  The Pharmacokinetics of the Conopeptide Contulakin-G (CGX-1160) After Intrathecal Administration: An Analysis of Data from Studies in Beagles , 2007, Anesthesia and Analgesia.

[25]  R. Norton,et al.  Conotoxins down under. , 2006, Toxicon : official journal of the International Society on Toxinology.

[26]  A. Xu,et al.  Diversity and evolution of conotoxins based on gene expression profiling of Conus litteratus. , 2006, Genomics.

[27]  Edgar Jacoby,et al.  The 7 TM G‐Protein‐Coupled Receptor Target Family , 2006, ChemMedChem.

[28]  Lei Xie,et al.  Identification and Molecular Diversity of T‐superfamily Conotoxins from Conus lividus and Conus litteratus , 2006, Chemical biology & drug design.

[29]  M. Aguilar,et al.  A biologically active hydrophobic T-1-conotoxin from the venom of Conus spurius , 2006, Peptides.

[30]  Wayne Boucher,et al.  The CCPN data model for NMR spectroscopy: Development of a software pipeline , 2005, Proteins.

[31]  C. Chi,et al.  Sequence diversity of T-superfamily conotoxins from Conus marmoreus. , 2005, Toxicon : official journal of the International Society on Toxinology.

[32]  Bernhard Pfeiffer,et al.  Over one hundred peptide-activated G protein-coupled receptors recognize ligands with turn structure. , 2005, Chemical reviews.

[33]  Miljanich Gp,et al.  Ziconotide: neuronal calcium channel blocker for treating severe chronic pain. , 2004 .

[34]  D. Keays,et al.  Determining sequences and post-translational modifications of novel conotoxins in Conus victoriae using cDNA sequencing and mass spectrometry. , 2004, Journal of mass spectrometry : JMS.

[35]  B. Olivera,et al.  Conus venoms: a rich source of novel ion channel-targeted peptides. , 2004, Physiological reviews.

[36]  Christian Bruns,et al.  Opportunities in somatostatin research: biological, chemical and therapeutic aspects , 2003, Nature Reviews Drug Discovery.

[37]  R. Graham,et al.  Allosteric α1-Adrenoreceptor Antagonism by the Conopeptide ρ-TIA* , 2003, Journal of Biological Chemistry.

[38]  D. Craik,et al.  Two new classes of conopeptides inhibit the α1-adrenoceptor and noradrenaline transporter , 2001, Nature Neuroscience.

[39]  Y. Gilad,et al.  Mechanisms for evolving hypervariability: the case of conopeptides. , 2001, Molecular biology and evolution.

[40]  B. Olivera,et al.  The T-superfamily of Conotoxins* , 1999, The Journal of Biological Chemistry.

[41]  B. Olivera,et al.  Contulakin-G, an O-Glycosylated Invertebrate Neurotensin* , 1999, The Journal of Biological Chemistry.

[42]  P. Fossier,et al.  A conotoxin from Conus textile with unusual posttranslational modifications reduces presynaptic Ca2+ influx. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[43]  A. Bax,et al.  Protein backbone angle restraints from searching a database for chemical shift and sequence homology , 1999, Journal of biomolecular NMR.

[44]  K. Wüthrich,et al.  Torsion angle dynamics for NMR structure calculation with the new program DYANA. , 1997, Journal of molecular biology.

[45]  G. Melacini,et al.  A refined model for the somatostatin pharmacophore: conformational analysis of lanthionine-sandostatin analogs. , 1997, Journal of medicinal chemistry.

[46]  J. Thornton,et al.  AQUA and PROCHECK-NMR: Programs for checking the quality of protein structures solved by NMR , 1996, Journal of biomolecular NMR.

[47]  J. McIntosh,et al.  Isolation of Lys-conopressin-G from the venom of the worm-hunting snail, Conus imperialis. , 1994, Toxicon : official journal of the International Society on Toxinology.

[48]  J. Tytgat,et al.  Subunit stoichiometry of a mammalian K+ channel determined by construction of multimeric cDNAs , 1992, Neuron.

[49]  S. Seino,et al.  Cloning and functional characterization of a family of human and mouse somatostatin receptors expressed in brain, gastrointestinal tract, and kidney. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[50]  B. Olivera,et al.  Invertebrate vasopressin/oxytocin homologs. Characterization of peptides from Conus geographus and Conus straitus venoms. , 1987, The Journal of biological chemistry.

[51]  Timothy F. Havel,et al.  Protein structures in solution by nuclear magnetic resonance and distance geometry. The polypeptide fold of the basic pancreatic trypsin inhibitor determined using two different algorithms, DISGEO and DISMAN. , 1987, Journal of molecular biology.

[52]  M. Billeter,et al.  Calibration of the angular dependence of the amide proton-Cα proton coupling constants, 3JHNα, in a globular protein: Use of 3JHNα for identification of helical secondary structure , 1984 .

[53]  T. Wheatley,et al.  In vivo and in vitro plasma disappearance and metabolism of somatostatin-28 and somatostatin-14 in the rat. , 1983, Endocrinology.

[54]  D. Veber,et al.  On the low energy solution conformation of somatostatin. , 1981, Biochemical and biophysical research communications.

[55]  N. Ling,et al.  Biologic and immunologic activities and applications of somatostatin analogs. , 1978, Metabolism: clinical and experimental.

[56]  S J Bergstrand,et al.  Conformationally restricted bicyclic analogs of somatostatin. , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[57]  N. Ling,et al.  Hypothalamic Polypeptide That Inhibits the Secretion of Immunoreactive Pituitary Growth Hormone , 1973, Science.

[58]  B. Sykes,et al.  Water Eliminated Fourier Transform NMR Spectroscopy , 1972 .