Experimental Measurement of Mode Shapes and Frequencies for Vibration of Plates by Optical Interferometry Method

Most of the published literature for vibration mode shapes of plates is concerned with analytical and numerical results. There are only very few experimental results available for the full field configuration of mode shapes for vibrating plates. In this study, an optical system called the AF-ESPI method with the out-of-plane displacement measurement is employed to investigate experimentally the vibration behavior of square isotropic plates with different boundary conditions. The edges of the plates may either be clamped or free. As compared with the film recording and optical reconstruction procedures used for holographic interferometry, the interferometric fringes of AF-ESPI are produced instantly by a video recording system. Based on the fact that clear fringe patterns will appear only at resonant frequencies, both resonant frequencies and corresponding mode shapes can be obtained experimentally at the same time by the proposed AF-ESPI method. Excellent quality of the interferometric fringe patterns for the mode shapes is demonstrated.