TWIG: a model to simulate the gravitropic response of a tree axis in the frame of elasticity and viscoelasticity, at intra-annual time scale.

[1]  J. Boyd Tree Growth Stresses , 1950 .

[2]  E. W. Sinnott REACTION WOOD AND THE REGULATION OF TREE FORM , 1952 .

[3]  A. Wardrop,et al.  The nature of reaction wood. VI. The reaction anatomy of seedlings of woody perennials. , 1962 .

[4]  W. Nowacki,et al.  Théorie du fluage , 1965 .

[5]  R. Archer,et al.  Mechanics of the compression wood response: I. Preliminary analyses. , 1970, Plant physiology.

[6]  Mechanics of the Compression Wood Response: II. On the Location, Action, and Distribution of Compression Wood Formation. , 1973, Plant physiology.

[7]  Z. Bažant,et al.  Rate-type creep law of aging concrete based on maxwell chain , 1974 .

[8]  G. Couarraze Initiation à la rhéologie , 1983 .

[9]  R. K. Bamber The Origin of Growth Stresses: A Rebuttal , 1987 .

[10]  Serge Laroze,et al.  Mécanique des structures. Tome 1 , 1987 .

[11]  Dr. Robert R. Archer,et al.  Growth Stresses and Strains in Trees , 1987, Springer Series in Wood Science.

[12]  J. Chaboche,et al.  Mechanics of Solid Materials , 1990 .

[13]  E. Berrada Recouvrance hygro-thermique du bois vert , 1991 .

[14]  H. Sinoquet,et al.  Estimating the three-dimensional geometry of a maize crop as an input of radiation models: comparison between three-dimensional digitizing and plant profiles , 1991 .

[15]  J. Gril,et al.  Recouvrance hygrothermique du bois vert. I. Influence de la température. Cas du jujubier (Ziziphus lotus (L) Lam) , 1993 .

[16]  J. Gril,et al.  Recouvrance hygrothermique du bois vert. II. Variations dans le plan transverse chez le châtaignier et l'épicéa et modélisation de la fissuration à coeur provoquée par l'étuvage , 1993 .

[17]  Henri Baillères,et al.  Tree biomechanics : growth, cumulative prestresses, and reorientations , 1994 .

[18]  J Digby,et al.  The gravitropic set-point angle (GSA): the identification of an important developmentally controlled variable governing plant architecture. , 1995, Plant, cell & environment.

[19]  Alain Vergne,et al.  INCREMENTAL ANALYSIS OF TIME-DEPENDENT EFFECTS IN COMPOSITE STRUCTURES , 1999 .

[20]  K J Niklas,et al.  The mechanical role of bark. , 1999, American journal of botany.

[21]  Bruno Jurkiewiez,et al.  A Numerical Method for the Analysis of Rheologic Effects in Concrete Bridges , 2001 .

[22]  Numerical modelling of shape regulation and growth stresses in trees , 2003, Trees.

[23]  Hiroyuki Yamamoto,et al.  Growth stress controls negative gravitropism in woody plant stems , 2002, Planta.

[24]  Thierry Fourcaud,et al.  Numerical modelling of shape regulation and growth stresses in trees , 2003, Trees.

[25]  B. Jourez,et al.  Effet de la durée d'application d'un stimulus gravitationnel sur la formation de bois de tension et de bois opposé dans de jeunes pousses de peuplier (Populus euramericana cv `Ghoy') , 2003 .

[26]  G. Jeronimidis,et al.  Comparison of mechanical properties of tension and opposite wood in Populus , 2004, Wood Science and Technology.

[27]  Christopher J. Hogan,et al.  Temperature and water content effects on the viscoelastic behavior of Tilia americana (Tiliaceae) sapwood , 2004, Trees.

[28]  J. D. Boyd,et al.  Tree growth stresses — Part V: Evidence of an origin in differentiation and lignification , 1972, Wood Science and Technology.

[29]  Anne Thibaut,et al.  Effect of circumferential heterogeneity of wood maturation strain, modulus of elasticity and radial growth on the regulation of stem orientation in trees , 2005, Trees.

[30]  Alexia Stokes,et al.  Tree biomechanics and growth strategies in the context of forest functional ecology , 2006 .

[31]  Thomas Speck,et al.  Ecology and Biomechanics : A Mechanical Approach to the Ecology of Animals and Plants , 2006 .

[32]  Bruno Moulia,et al.  Posture control and skeletal mechanical acclimation in terrestrial plants: implications for mechanical modeling of plant architecture. , 2006, American-Eurasian journal of botany.

[33]  B. Moulia,et al.  The Gravitropic Response of Poplar Trunks: Key Roles of Prestressed Wood Regulation and the Relative Kinetics of Cambial Growth versus Wood Maturation[C][OA] , 2007, Plant Physiology.

[34]  George Jeronimidis,et al.  Stress generation in the tension wood of poplar is based on the lateral swelling power of the G-layer. , 2008, The Plant journal : for cell and molecular biology.

[35]  M. Fournier,et al.  Biomechanical design and long-term stability of trees: morphological and wood traits involved in the balance between weight increase and the gravitropic reaction. , 2009, Journal of theoretical biology.

[36]  M. Fournier,et al.  Functional diversity in gravitropic reaction among tropical seedlings in relation to ecological and developmental traits. , 2009, Journal of experimental botany.

[37]  R. Archer,et al.  Mechanics of the Compression Wood Response , 2022 .