Sharp condition for blow-up and global existence in a two species chemotactic Keller–Segel system in 2

For the parabolic–elliptic Keller–Segel system in 2 it has been proved that if the initial mass is less than 8π/χ, a global solution exists, and in case the initial mass is larger than 8π/χ, blow-up happens. The case of several chemotactic species introduces an additional question: What is the analog for the critical mass obtained for the single species system? We find a threshold curve in the two species case that allows us to determine if the system is a blow-up or a global in time solution. No radial symmetry is assumed.

[1]  I. Shafrir,et al.  On the Solutions of Liouville Systems , 1997 .

[2]  Piotr Biler,et al.  LOCAL AND GLOBAL SOLVABILITY OF SOME PARABOLIC SYSTEMS MODELLING CHEMOTAXIS , 1998 .

[3]  Dirk Horstmann,et al.  F ¨ Ur Mathematik in Den Naturwissenschaften Leipzig from 1970 until Present: the Keller-segel Model in Chemotaxis and Its Consequences from 1970 until Present: the Keller-segel Model in Chemotaxis and Its Consequences , 2022 .

[4]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[5]  Benoît Perthame,et al.  Two-dimensional Keller-Segel model: Optimal critical mass and qualitative properties of the solutions , 2006 .

[6]  I. Shafrir,et al.  Moser-Trudinger and logarithmic HLS inequalities for systems , 2005 .

[7]  E. Stein Singular Integrals and Di?erentiability Properties of Functions , 1971 .

[8]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[9]  Giorgio C. Buttazzo,et al.  Variational Analysis in Sobolev and BV Spaces - Applications to PDEs and Optimization, Second Edition , 2014, MPS-SIAM series on optimization.

[10]  Angela Stevens,et al.  Simultaneous finite time blow-up in a two-species model for chemotaxis , 2009 .

[11]  Carlos Conca,et al.  Remarks on the blowup and global existence for a two species chemotactic Keller–Segel system in 2 , 2011, European Journal of Applied Mathematics.

[12]  W. Jäger,et al.  On explosions of solutions to a system of partial differential equations modelling chemotaxis , 1992 .

[13]  Gershon Wolansky,et al.  Multi-components chemotactic system in the absence of conflicts , 2002, European Journal of Applied Mathematics.

[14]  José A. Carrillo,et al.  Infinite Time Aggregation for the Critical Patlak-Keller-Segel model in R 2 , 2007 .

[15]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[16]  Stephen Childress,et al.  Chemotactic Collapse in Two Dimensions , 1984 .

[17]  Takayoshi Ogawa,et al.  Finite time blow-up of the solution for a nonlinear parabolic equation of drift-diffusion type , 2003 .

[18]  Michael Loss,et al.  Competing symmetries, the logarithmic HLS inequality and Onofri's inequality onsn , 1992 .

[19]  Antonio Fasano,et al.  EQUILIBRIUM OF TWO POPULATIONS SUBJECT TO CHEMOTAXIS , 2004 .

[20]  J. J. L. Velázquez,et al.  Point Dynamics in a Singular Limit of the Keller--Segel Model 2: Formation of the Concentration Regions , 2004, SIAM J. Appl. Math..

[21]  J. Cooper SINGULAR INTEGRALS AND DIFFERENTIABILITY PROPERTIES OF FUNCTIONS , 1973 .

[22]  Hal L. Smith,et al.  Steady states of models of microbial growth and competition with chemotaxis , 1999 .

[23]  Benoît Perthame,et al.  Optimal critical mass in the two dimensional Keller–Segel model in R2 , 2004 .

[24]  H. Gajewski,et al.  Global Behaviour of a Reaction‐Diffusion System Modelling Chemotaxis , 1998 .

[25]  I. Fonseca,et al.  Modern Methods in the Calculus of Variations: L^p Spaces , 2007 .

[26]  L. Segel,et al.  Traveling bands of chemotactic bacteria: a theoretical analysis. , 1971, Journal of theoretical biology.