Fixed Point Theory in -Complete Metric Spaces with Applications

The aim of this paper is to introduce new concepts of --complete metric space and --continuous function and establish fixed point results for modified ---rational contraction mappings in --complete metric spaces. As an application, we derive some Suzuki type fixed point theorems and new fixed point theorems for -graphic-rational contractions. Moreover, some examples and an application to integral equations are given here to illustrate the usability of the obtained results.

[1]  Mujahid Abbas,et al.  Common fixed points of almost generalized contractive mappings in ordered metric spaces , 2011, Appl. Math. Comput..

[2]  A. Ran,et al.  A fixed point theorem in partially ordered sets and some applications to matrix equations , 2003 .

[4]  E. Karapınar,et al.  α-admissible mappings and related fixed point theorems , 2013, Journal of Inequalities and Applications.

[5]  W. Sintunavarat,et al.  Fixed point result and applications on a b-metric space endowed with an arbitrary binary relation , 2013 .

[6]  V. Berinde Iterative Approximation of Fixed Points , 2007 .

[7]  Abdul Latif,et al.  Modified α-ψ-contractive mappings with applications , 2013 .

[8]  William A. Kirk,et al.  Fixed point theorems in R-trees with applications to graph theory , 2006 .

[9]  N. Hussain,et al.  Best Proximity Point Results for Modified --Proximal Rational Contractions , 2013 .

[10]  Petko D. Proinov New general convergence theory for iterative processes and its applications to Newton-Kantorovich type theorems , 2010, J. Complex..

[11]  Bessem Samet,et al.  Fixed point theorems for α–ψ-contractive type mappings , 2012 .

[12]  Florin Bojor Fixed point theorems for Reich type contractions on metric spaces with a graph , 2012 .

[13]  Z. Kadelburg,et al.  Suzuki-type fixed point results in metric type spaces , 2012, Fixed Point Theory and Applications.

[14]  J. Jachymski,et al.  The contraction principle for mappings on a metric space with a graph , 2007 .

[15]  C. Vetro,et al.  Fixed point theorems for twisted (α,β)-ψ-contractive type mappings and applications , 2013 .

[16]  Z. Kadelburg,et al.  Suzuki-type fixed point results in metric type spaces , 2012 .

[17]  Z. Kadelburg,et al.  Edelstein–Suzuki-type fixed point results in metric and abstract metric spaces , 2012 .

[18]  C. Vetro,et al.  Some new fixed point results in non-Archimedean fuzzy metric spaces , 2013 .

[19]  Petko D. Proinov A generalization of the Banach contraction principle with high order of convergence of successive approximations , 2007 .

[20]  A note on fixed point results without monotone property in partially ordered metric space , 2014 .

[21]  R. Agarwal,et al.  Fixed Point Theorems in Ordered Banach Spaces and Applications to Nonlinear Integral Equations , 2012 .

[22]  S. Banach Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales , 1922 .

[23]  Nawab Hussain,et al.  Common fixed points for Ćirić type $f$-weak contraction with applications , 2010, Publicationes Mathematicae Debrecen.

[24]  N. Hussain,et al.  Fixed Points for -Graphic Contractions with Application to Integral Equations , 2013 .

[25]  Bessem Samet,et al.  Generalized - Contractive Type Mappings and Related Fixed Point Theorems with Applications , 2012 .

[26]  N. Hussain,et al.  Krasnosel’skii-type fixed point theorems with applications to Volterra integral equations , 2013 .

[27]  Abdul Latif,et al.  Fixed point results for single and set-valued α-η-ψ-contractive mappings , 2013 .

[28]  Tomonari Suzuki,et al.  A generalized Banach contraction principle that characterizes metric completeness , 2007 .