Probing Early Structure Formation with Far-Infrared Background Correlations

The large-scale structure of high-redshift galaxies produces correlated anisotropy in the far-infrared background (FIRB). In regions of the sky where the thermal emission from Galactic dust is well below average, these high-redshift correlations may be the most significant source of angular fluctuation power over a wide range of angular scales, from ~7' to ~3°, and frequencies, from ~400 to ~1000 GHz. The strength of this signal should allow detailed studies of the statistics of the FIRB fluctuations, including the shape of the angular power spectrum at a given frequency and the degree of coherence between FIRB maps at different frequencies. The FIRB correlations depend on and hence constrain the redshift-dependent spectral energy distributions, number counts, and clustering bias of the galaxies and active nuclei that contribute to the background. We quantify the accuracy to which Planck and a newly proposed balloon-borne mission, Explorer of Diffuse Galactic Emissions, could constrain models of the high-redshift universe through the measurement of FIRB fluctuations. We conclude that the average bias of high-redshift galaxies could be measured to an accuracy of 1% or, for example, separated into four redshift bins with ~10% accuracy.

[1]  E. L. Wright,et al.  The COBE Diffuse Infrared Background Experiment Search for the Cosmic Infrared Background. IV. Cosmological Implications , 1997, astro-ph/9806129.

[2]  LARGE-SCALE SUNYAEV-ZELDOVICH EFFECT: MEASURING STATISTICAL PROPERTIES WITH MULTIFREQUENCY MAPS , 2000, astro-ph/0002238.

[3]  Max Tegmark Measuring Cosmological Parameters with Galaxy Surveys , 1997, astro-ph/9706198.

[4]  Max Tegmark,et al.  A method for subtracting foregrounds from multifrequency CMB sky maps , 1996 .

[5]  J. C. Mather,et al.  Clustering of the Diffuse Infrared Light from the COBE DIRBE Maps. III. Power Spectrum Analysis and Excess Isotropic Component of Fluctuations , 1999 .

[6]  G. Kauffmann,et al.  The formation and evolution of galaxies within merging dark matter haloes , 1993 .

[7]  M. Rees,et al.  The Radiative Feedback of the First Cosmological Objects , 1999, astro-ph/9903336.

[8]  I. Smail,et al.  A Deep Submillimeter Survey of Lensing Clusters: A New Window on Galaxy Formation and Evolution , 1997, astro-ph/9708135.

[9]  Wayne Hu,et al.  Power Spectra for Cold Dark Matter and Its Variants , 1997, astro-ph/9710252.

[10]  J. Ostriker,et al.  Reionization of the Universe and the Early Production of Metals , 1996, astro-ph/9612127.

[11]  Modelling the evolution of galaxy clustering , 1998, astro-ph/9811222.

[12]  N. Kaiser A sparse-sampling strategy for the estimation of large-scale clustering from redshift surveys , 1986 .

[13]  Time Evolution of Galaxy Formation and Bias in Cosmological Simulations , 1999, astro-ph/9903165.

[14]  M. Giavalisco,et al.  A Counts-in-Cells Analysis Of Lyman-break Galaxies At Redshift z ~ 3 , 1998 .

[15]  Edward L. Wright Angular Power Spectra of the COBE DIRBE Maps , 1998 .

[16]  The nature of high-redshift galaxies , 1998, astro-ph/9806228.

[17]  O. Fèvre,et al.  The Canada-UK Deep Submillimeter Survey: First Submillimeter Images, the Source Counts, and Resolution of the Background , 1998, astro-ph/9808040.

[18]  D. Elbaz,et al.  The European Large Area ISO Survey — II. Mid-infrared extragalactic source counts , 2000 .

[19]  A. Melchiorri,et al.  A flat Universe from high-resolution maps of the cosmic microwave background radiation , 2000, Nature.

[20]  G. Fazio,et al.  The cosmic far-infrared background at high galactic latitudes , 1976 .

[21]  A. Aguirre Intergalactic Dust and Observations of Type Ia Supernovae , 1999, astro-ph/9904319.

[22]  H. M. Lee,et al.  Optical properties of interstellar graphite and silicate grains , 1984 .

[23]  David J. Schlegel,et al.  Extrapolation of Galactic Dust Emission at 100 Microns to Cosmic Microwave Background Radiation Frequencies Using FIRAS , 1999, astro-ph/9905128.

[24]  D. Schlegel,et al.  Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.

[25]  Mapping the CMB sky: The BOOMERanG experiment , 1999, astro-ph/9911461.

[26]  Galaxy Evolution, Deep Galaxy Counts, and the Near-Infrared Cosmic Infrared Background , 1998, astro-ph/9802337.

[27]  Lloyd Knox,et al.  Correlations in the Far-Infrared Background , 1999, astro-ph/9906399.

[28]  L. Pozzetti,et al.  The Star Formation History of Field Galaxies , 1997, astro-ph/9708220.

[29]  B. Krauskopf,et al.  Proc of SPIE , 2003 .

[30]  The 4 Year COBE Normalization and Large-Scale Structure , 1996, astro-ph/9607060.

[31]  M. G. Kendall,et al.  The advanced theory of statistics. Vols. 2. , 1969 .

[32]  Jean-Paul Kneib,et al.  Deep Counts of Submillimeter Galaxies , 1998, astro-ph/9812412.

[33]  Dale J. Fixsen,et al.  Design for the COBE far-infrared absolute spectrophotometer , 1993, Optics & Photonics.

[34]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[35]  Cosmological Constant or Intergalactic Dust? Constraints from the Cosmic Far-Infrared Background , 1999, astro-ph/9907039.

[36]  C. Surace,et al.  The European Large Area ISO Survey – III. 90-μm extragalactic source counts , 2000 .

[37]  E. Hivon,et al.  Semi‐analytic modelling of galaxy evolution in the IR/submm range , 1997, astro-ph/9710340.

[38]  P. Carlson,et al.  Particle Physics and the Universe , 2001 .

[39]  J. Dunlop,et al.  High-redshift star formation in the Hubble Deep Field revealed by a submillimetre-wavelength survey , 1998, Nature.

[40]  Lloyd Knox Forecasting foreground impact on cosmic microwave background measurements , 1999 .

[41]  J. R. Bond,et al.  Spectrum and Anisotropy of the Cosmic Infrared Background , 1986 .

[42]  M. Dickinson,et al.  The Angular Clustering of Lyman-Break Galaxies at Redshift z ~ 3 , 1998, astro-ph/9802318.

[43]  Jean-Paul Kneib,et al.  Dust-obscured star formation and AGN fuelling in hierarchical models of galaxy evolution , 1999 .

[44]  Max Tegmark,et al.  Foregrounds and Forecasts for the Cosmic Microwave Background , 2000 .

[45]  S. White,et al.  An analytic model for the spatial clustering of dark matter haloes , 1995, astro-ph/9512127.

[46]  B. Zuckerman,et al.  Submillimetre images of dusty debris around nearby stars , 1998, Nature.

[47]  M. Giavalisco,et al.  A Large Structure of Galaxies at Redshift z ~ 3 and Its Cosmological Implications , 1997, astro-ph/9708125.

[48]  Andrew W. Blain Dust temperature and the submillimetre—radio flux density ratio as a redshift indicator for distant galaxies , 1999 .

[49]  Avishai Dekel,et al.  Stochastic Nonlinear Galaxy Biasing , 1998, astro-ph/9806193.

[50]  C. Bennett,et al.  The Spectrum of the Extragalactic Far-Infrared Background from the COBE FIRAS Observations , 1998, astro-ph/9803021.

[51]  D. Eisenstein,et al.  Cosmic Complementarity: Joint Parameter Estimation from Cosmic Microwave Background Experiments and Redshift Surveys , 1998, astro-ph/9807130.

[52]  D. B. Sanders,et al.  Resolving the Submillimeter Background: The 850 Micron Galaxy Counts , 1999, astro-ph/9904126.

[53]  I. Smail,et al.  Redshift Distribution of the Faint Submillimeter Galaxy Population , 1999, astro-ph/9903142.

[54]  R. J. Ivison,et al.  Radio Constraints on the Identifications and Redshifts of Submillimeter Galaxies , 1999, astro-ph/9907083.

[55]  L. Cowie,et al.  Submillimetre-wavelength detection of dusty star-forming galaxies at high redshift , 1998, Nature.

[56]  James J. Bock,et al.  Bolocam: a millimeter-wave bolometric camera , 1998, Astronomical Telescopes and Instrumentation.

[57]  P. Peebles,et al.  The Large-Scale Structure of the Universe , 1980 .

[58]  T. N. Gautier,et al.  A calculation of confusion noise due to infrared cirrus , 1992 .

[59]  Max Tegmark,et al.  Karhunen-Loève Eigenvalue Problems in Cosmology: How Should We Tackle Large Data Sets? , 1996, astro-ph/9603021.

[60]  M. Kendall,et al.  The advanced theory of statistics , 1945 .