Estimate of daytime single-layer cloud base height from advanced baseline imager measurements

[1]  Shuo Ma,et al.  Estimating cloud base height from Himawari-8 based on a random forest algorithm , 2021 .

[2]  J. Ruppert,et al.  The critical role of cloud–infrared radiation feedback in tropical cyclone development , 2020, Proceedings of the National Academy of Sciences.

[3]  W. Paul Menzel,et al.  Retrieval of cloud top properties from advanced geostationary satellite imager measurements based on machine learning algorithms , 2020 .

[4]  David M. Winker,et al.  Discriminating between clouds and aerosols in the CALIOP version 4.1 data products , 2018, Atmospheric Measurement Techniques.

[5]  David S. Henderson,et al.  Using CALIOP to estimate cloud-field base height and its uncertainty: the Cloud Base Altitude Spatial Extrapolator (CBASE) algorithm and dataset , 2018, Earth System Science Data.

[6]  Susanne Crewell,et al.  Cloud base height retrieval from multi-angle satellite data , 2018, Atmospheric Measurement Techniques.

[7]  Anne Garnier,et al.  Extinction and optical depth retrievals for CALIPSO's Version 4 data release , 2018, Atmospheric Measurement Techniques.

[8]  Nina Håkansson,et al.  Neural network cloud top pressure and height for MODIS , 2018, Atmospheric Measurement Techniques.

[9]  Joo‐Hong Kim,et al.  The observed relationship of cloud to surface longwave radiation and air temperature at Ny-Ålesund, Svalbard , 2018 .

[10]  Lin Chen,et al.  Developing the science product algorithm testbed for Chinese next-generation geostationary meteorological satellites: Fengyun-4 series , 2017, Journal of Meteorological Research.

[11]  Henrik Madsen,et al.  Multi-site solar power forecasting using gradient boosted regression trees , 2017 .

[12]  Timothy J. Schmit,et al.  A Closer Look at the ABI on the GOES-R Series , 2017 .

[13]  Steven D. Miller,et al.  Cloud-Base Height Estimation from VIIRS. Part II: A Statistical Algorithm Based on A-Train Satellite Data , 2017 .

[14]  Steven D. Miller,et al.  Cloud-Base Height Estimation from VIIRS. Part I: Operational Algorithm Validation against CloudSat , 2017 .

[15]  Birk Diedenhofen,et al.  cocor: A Comprehensive Solution for the Statistical Comparison of Correlations , 2015, PloS one.

[16]  Bertrand Michel,et al.  Grouped variable importance with random forests and application to multiple functional data analysis , 2014, Comput. Stat. Data Anal..

[17]  Tim Appelhans,et al.  Precipitation Estimates from MSG SEVIRI Daytime, Nighttime, and Twilight Data with Random Forests , 2014 .

[18]  Gerald G. Mace,et al.  The CloudSat radar‐lidar geometrical profile product (RL‐GeoProf): Updates, improvements, and selected results , 2014 .

[19]  Steven D. Miller,et al.  Estimating Three-Dimensional Cloud Structure via Statistically Blended Satellite Observations , 2014 .

[20]  R. Houze,et al.  Vertical Structure of Hurricane Eyewalls as Seen by the TRMM Precipitation Radar , 2011 .

[21]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[22]  T. Garrett,et al.  Mammatus Clouds as a Response to Cloud-Base Radiative Heating , 2010 .

[23]  H. Treut,et al.  THE CALIPSO MISSION: A Global 3D View of Aerosols and Clouds , 2010 .

[24]  J. Comstock,et al.  Macrophysical and optical properties of midlatitude cirrus clouds from four ground-based lidars and collocated CALIOP observations , 2010 .

[25]  Steven A. Ackerman,et al.  High-Spectral- and High-Temporal-Resolution Infrared Measurements from Geostationary Orbit , 2009 .

[26]  Chiel C. van Heerwaarden,et al.  Relative Humidity as an Indicator for Cloud Formation over Heterogeneous Land Surfaces , 2008 .

[27]  Patrick Minnis,et al.  Aviation Applications for Satellite-Based Observations of Cloud Properties, Convection Initiation, In-Flight Icing, Turbulence, and Volcanic Ash , 2007 .

[28]  D. Winker,et al.  Initial performance assessment of CALIOP , 2007 .

[29]  W. Paul Menzel,et al.  INTRODUCING THE NEXT-GENERATION ADVANCED BASELINE IMAGER ON GOES-R , 2005 .

[30]  Shepard A. Clough,et al.  Atmospheric radiative transfer modeling: a summary of the AER codes , 2005 .

[31]  David M. Winker,et al.  Status and performance of the CALIOP lidar , 2004, SPIE Remote Sensing.

[32]  J. Friedman Greedy function approximation: A gradient boosting machine. , 2001 .

[33]  William B. Rossow,et al.  Effects of Cloud Vertical Structure on Atmospheric Circulation in the GISS GCM , 1998 .

[34]  S. Manabe,et al.  Cloud Feedback Processes in a General Circulation Model , 1988 .

[35]  Zhiqiang Xiao,et al.  GBRT-Based Estimation of Terrestrial Latent Heat Flux in the Haihe River Basin from Satellite and Reanalysis Datasets , 2021, Remote. Sens..

[36]  Shuo Ma,et al.  Estimation of cloud base height for FY-4A satellite based on random forest algorithm , 2019 .

[37]  I. Stachlewska,et al.  Comparing Water Vapor Mixing Ratio Profiles and Cloud Vertical Structure from Multiwavelength Raman Lidar Retrievals and Radiosounding Measurements , 2016 .

[38]  Howard W. Barker,et al.  Satellite‐based estimation of cloud‐base heights using constrained spectral radiance matching , 2016 .