Fundamental electronic properties and applications of single-walled carbon nanotubes.

Recent scanning tunneling microscopy studies of the intrinsic electronic properties of single-walled carbon nanotubes (SWNTs) are overviewed in this Account. A brief theoretical treatment of the electronic properties of SWNTs is developed, and then the effects of finite curvature and broken symmetry on electronic properties, the unique one-dimensional energy dispersion in nanotubes, the interaction between local spins and carriers in metallic nanotubes systems, and the atomic structure and electronic properties of intramolecular junctions are described. The implications of these studies for understanding fundamental one-dimensional physics and future nanotube device applications are also discussed.

[1]  Steven G. Louie,et al.  Broken symmetry and pseudogaps in ropes of carbon nanotubes , 1998, Nature.

[2]  Alex C. Hewson,et al.  The Kondo Problem to Heavy Fermions , 1993 .

[3]  Charles M. Lieber,et al.  Energy Gaps in "Metallic" Single-Walled Carbon Nanotubes , 2001, Science.

[4]  Riichiro Saito,et al.  Electronic structure of chiral graphene tubules , 1992 .

[5]  J. Kondo Resistance Minimum in Dilute Magnetic Alloys , 1964 .

[6]  Á. Rubio Spectroscopic properties and STM images of carbon nanotubes , 1999, cond-mat/9903215.

[7]  Philip Kim,et al.  Structure and Electronic Properties of Carbon Nanotubes , 2000 .

[8]  Marco Buongiorno Nardelli,et al.  Ad-dimers on Strained Carbon Nanotubes: A New Route for Quantum Dot Formation? , 1999 .

[9]  Sawada,et al.  New one-dimensional conductors: Graphitic microtubules. , 1992, Physical review letters.

[10]  Alex Kleiner,et al.  Band gaps of primary metallic carbon nanotubes , 2000, cond-mat/0007244.

[11]  Cohen,et al.  Defects, quasibound states, and quantum conductance in metallic carbon nanotubes , 2000, Physical review letters.

[12]  C. Dekker Carbon nanotubes as molecular quantum wires , 1999 .

[13]  One-dimensional energy dispersion of single-walled carbon nanotubes by resonant electron scattering. , 2001, Physical review letters.

[14]  D. Robertson,et al.  Properties of fullerene nanotubules , 1993 .

[15]  Electronic Density of States of Atomically Resolved Single-Walled Carbon Nanotubes: Van Hove Singularities and End States , 1998, cond-mat/9812408.

[16]  Charles M. Lieber,et al.  Scanning tunneling microscopy studies of the one-dimensional electronic properties of single-walled carbon nanotubes. , 2002, Annual review of physical chemistry.

[17]  U. Fano,et al.  Pairs of two-level systems , 1983 .

[18]  N. Wingreen,et al.  Tunneling into a single magnetic atom: spectroscopic evidence of the kondo resonance , 1998, Science.

[19]  B. Delley,et al.  Kondo Scattering Observed at a Single Magnetic Impurity , 1998 .

[20]  R. Smalley,et al.  Two-dimensional imaging of electronic wavefunctions in carbon nanotubes , 2001, Nature.

[21]  M. Dresselhaus,et al.  Physical properties of carbon nanotubes , 1998 .

[22]  E. J. Mele,et al.  Size, Shape, and Low Energy Electronic Structure of Carbon Nanotubes , 1997 .

[23]  J. Nagy,et al.  Structural and electronic properties of bent carbon nanotubes , 1995 .

[24]  Charles M. Lieber,et al.  Resonant electron scattering by defects in single-walled carbon nanotubes. , 2001, Science.

[25]  Susumu Saito,et al.  Effect of intertube coupling on the electronic structure of carbon nanotube ropes , 1998 .

[26]  Zhen Yao,et al.  Carbon nanotube intramolecular junctions , 1999, Nature.

[27]  P. Wallace The Band Theory of Graphite , 1947 .

[28]  Charles M. Lieber,et al.  Magnetic clusters on single-walled carbon nanotubes: the Kondo effect in a one-dimensional host. , 2000, Science.

[29]  White,et al.  Are fullerene tubules metallic? , 1992, Physical review letters.

[30]  M. Dresselhaus,et al.  Tunneling conductance of connected carbon nanotubes. , 1996, Physical review. B, Condensed matter.

[31]  Paul L. McEuen,et al.  Nanotechnology: Carbon-based electronics , 1998, Nature.

[32]  Benedict,et al.  Pure carbon nanoscale devices: Nanotube heterojunctions. , 1996, Physical review letters.

[33]  Benedict,et al.  Hybridization effects and metallicity in small radius carbon nanotubes. , 1994, Physical review letters.

[34]  C. Lieber,et al.  Atomic structure and electronic properties of single-walled carbon nanotubes , 1998, Nature.

[35]  Charles M. Lieber,et al.  Atomically resolved single-walled carbon nanotube intramolecular junctions. , 2001, Science.

[36]  H. Mizes,et al.  Long-Range Electronic Perturbations Caused by Defects Using Scanning Tunneling Microscopy , 1989, Science.

[37]  Electron backscattering on single-wall carbon nanotubes observed by scanning tunneling microscopy , 1999 .

[38]  E. J. Mele,et al.  Electronic structure of carbon nanotube ropes , 2000 .

[39]  Dunlap,et al.  Relating carbon tubules. , 1994, Physical review. B, Condensed matter.

[40]  A. Rinzler,et al.  Electronic structure of atomically resolved carbon nanotubes , 1998, Nature.

[41]  John W. Mintmire,et al.  Universal Density of States for Carbon Nanotubes , 1998 .

[42]  D. Eigler,et al.  Quantum mirages formed by coherent projection of electronic structure , 2000, Nature.

[43]  Fujita,et al.  Electronic structure of graphene tubules based on C60. , 1992, Physical review. B, Condensed matter.