LiDAR-in-the-Loop Hyperparameter Optimization

LiDAR has become a cornerstone sensing modality for 3D vision. LiDAR systems emit pulses of light into the scene, take measurements of the returned signal, and rely on hardware digital signal processing (DSP) pipelines to construct 3D point clouds from these measurements. The resulting point clouds output by these DSPs are input to downstream 3D vision models - both, in the form of training datasets or as input at inference time. Existing LiDAR DSPs are composed of cascades of parameterized operations; modifying configuration parameters results in significant changes in the point clouds and consequently the output of downstream methods. Existing methods treat LiDAR systems as fixed black boxes and construct downstream task networks more robust with respect to measurement fluctuations. Departing from this approach, the proposed method directly optimizes LiDAR sensing and DSP parameters for downstream tasks. To investigate the optimization of LiDAR system parameters, we devise a realistic LiDAR simulation method that generates raw waveforms as input to a LiDAR DSP pipeline. We optimize LiDAR parameters for both 3D object detection IoU losses and depth error metrics by solving a nonlinear multi-objective optimization problem with a 0th-order stochastic algorithm. For automotive 3D object detection models, the proposed method outperforms manual expert tuning by 39.5% mean Average Precision (mAP).

[1]  B. Schiele,et al.  SHIFT: A Synthetic Driving Dataset for Continuous Multi-Task Domain Adaptation , 2022, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[2]  L. Gool,et al.  LiDAR Snowfall Simulation for Robust 3D Object Detection , 2022, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[3]  L. Gool,et al.  End-To-End Optimization of LiDAR Beam Configuration for 3D Object Detection and Localization , 2022, IEEE Robotics and Automation Letters.

[4]  Luc Van Gool,et al.  Fog Simulation on Real LiDAR Point Clouds for 3D Object Detection in Adverse Weather , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[5]  Matthew O'Toole,et al.  Multi-Echo LiDAR for 3D Object Detection , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[6]  Vishal M. Patel,et al.  Lidar Light Scattering Augmentation (LISA): Physics-based Simulation of Adverse Weather Conditions for 3D Object Detection , 2021, ArXiv.

[7]  Felix Heide,et al.  End-to-end High Dynamic Range Camera Pipeline Optimization , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[8]  Kenji Narumi,et al.  Liquid crystal-tunable optical phased array for LiDAR applications , 2021, OPTO.

[9]  R. Urtasun,et al.  AdvSim: Generating Safety-Critical Scenarios for Self-Driving Vehicles , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[10]  Matti Kutila,et al.  Benchmarking Automotive LiDAR Performance in Arctic Conditions , 2020, 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC).

[11]  Raoul de Charette,et al.  Rain Rendering for Evaluating and Improving Robustness to Bad Weather , 2020, International Journal of Computer Vision.

[12]  Felix Heide,et al.  Hardware-in-the-Loop End-to-End Optimization of Camera Image Processing Pipelines , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[13]  Raquel Urtasun,et al.  LiDARsim: Realistic LiDAR Simulation by Leveraging the Real World , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[14]  Huikai Xie,et al.  MEMS Mirrors for LiDAR: A Review , 2020, Micromachines.

[15]  Gerald S. Buller,et al.  Full Waveform LiDAR for Adverse Weather Conditions , 2020, IEEE Transactions on Vehicular Technology.

[16]  Ayan Chakrabarti,et al.  Towards a MEMS-based Adaptive LIDAR , 2020, 2020 International Conference on 3D Vision (3DV).

[17]  Shinpei Kato,et al.  LIBRE: The Multiple 3D LiDAR Dataset , 2020, 2020 IEEE Intelligent Vehicles Symposium (IV).

[18]  Xiaogang Wang,et al.  PV-RCNN: Point-Voxel Feature Set Abstraction for 3D Object Detection , 2019, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[19]  Dragomir Anguelov,et al.  Scalability in Perception for Autonomous Driving: Waymo Open Dataset , 2019, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[20]  Leo F. Isikdogan,et al.  VisionISP: Repurposing the Image Signal Processor for Computer Vision Applications , 2019, 2019 IEEE International Conference on Image Processing (ICIP).

[21]  Annibale Panichella,et al.  An adaptive evolutionary algorithm based on non-euclidean geometry for many-objective optimization , 2019, GECCO.

[22]  Felix Heide,et al.  Hyperparameter optimization in black-box image processing using differentiable proxies , 2019, ACM Trans. Graph..

[23]  Matti Kutila,et al.  Testing and Validation of Automotive Point-Cloud Sensors in Adverse Weather Conditions , 2019, Applied Sciences.

[24]  Wilhelm Stork,et al.  Weather Influence and Classification with Automotive Lidar Sensors , 2019, 2019 IEEE Intelligent Vehicles Symposium (IV).

[25]  Simon Lucey,et al.  Argoverse: 3D Tracking and Forecasting With Rich Maps , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[26]  Andrea Simonelli,et al.  Disentangling Monocular 3D Object Detection , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[27]  Krzysztof Czarnecki,et al.  Precise Synthetic Image and LiDAR (PreSIL) Dataset for Autonomous Vehicle Perception , 2019, 2019 IEEE Intelligent Vehicles Symposium (IV).

[28]  Felix Heide,et al.  Seeing Through Fog Without Seeing Fog: Deep Multimodal Sensor Fusion in Unseen Adverse Weather , 2019, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[29]  Christopher R. Hudson,et al.  Predicting the Influence of Rain on LIDAR in ADAS , 2019, Electronics.

[30]  Christian Steger,et al.  Review of LiDAR Sensor Data Acquisition and Compression for Automotive Applications , 2018, Proceedings.

[31]  Liang Wang,et al.  Augmented LiDAR Simulator for Autonomous Driving , 2018, IEEE Robotics and Automation Letters.

[32]  Kalyanmoy Deb,et al.  Reference Point Based NSGA-III for Preferred Solutions , 2018, 2018 IEEE Symposium Series on Computational Intelligence (SSCI).

[33]  Chyuan-Tyng Wu,et al.  Automatic ISP Image Quality Tuning Using Nonlinear Optimization , 2018, 2018 25th IEEE International Conference on Image Processing (ICIP).

[34]  Aswin C. Sankaranarayanan,et al.  Signal Processing Based Pile-up Compensation for Gated Single-Photon Avalanche Diodes , 2018, 1806.07437.

[35]  Gordon Wetzstein,et al.  Sub-picosecond photon-efficient 3D imaging using single-photon sensors , 2018, Scientific Reports.

[36]  Werner Ritter,et al.  A Benchmark for Lidar Sensors in Fog: Is Detection Breaking Down? , 2018, 2018 IEEE Intelligent Vehicles Symposium (IV).

[37]  Michael T. M. Emmerich,et al.  A tutorial on multiobjective optimization: fundamentals and evolutionary methods , 2018, Natural Computing.

[38]  Lijun Xu,et al.  Influence of Waveform Characteristics on LiDAR Ranging Accuracy and Precision , 2018, Sensors.

[39]  Yoram Bresler,et al.  Learning Filter Bank Sparsifying Transforms , 2018, IEEE Transactions on Signal Processing.

[40]  Xin Yao,et al.  Two-Archive Evolutionary Algorithm for Constrained Multiobjective Optimization , 2017, IEEE Transactions on Evolutionary Computation.

[41]  V. Koltun,et al.  CARLA: An Open Urban Driving Simulator , 2017, CoRL.

[42]  Ming C. Wu,et al.  Lidar System Architectures and Circuits , 2017, IEEE Communications Magazine.

[43]  Vladlen Koltun,et al.  Playing for Benchmarks , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[44]  Luc Van Gool,et al.  Semantic Foggy Scene Understanding with Synthetic Data , 2017, International Journal of Computer Vision.

[45]  Bernard Ghanem,et al.  Sim4CV: A Photo-Realistic Simulator for Computer Vision Applications , 2017, International Journal of Computer Vision.

[46]  Gordon Wetzstein,et al.  Reconstructing Transient Images from Single-Photon Sensors , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[47]  Ashish Kapoor,et al.  AirSim: High-Fidelity Visual and Physical Simulation for Autonomous Vehicles , 2017, FSR.

[48]  George M. Williams Optimization of eyesafe avalanche photodiode lidar for automobile safety and autonomous navigation systems , 2017 .

[49]  Youhei Akimoto,et al.  Population Size Adaptation for the CMA-ES Based on the Estimation Accuracy of the Natural Gradient , 2016, GECCO.

[50]  Antonio M. López,et al.  The SYNTHIA Dataset: A Large Collection of Synthetic Images for Semantic Segmentation of Urban Scenes , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[51]  Kalyanmoy Deb,et al.  A Unified Evolutionary Optimization Procedure for Single, Multiple, and Many Objectives , 2016, IEEE Transactions on Evolutionary Computation.

[52]  Wolfram Burgard,et al.  Motion-based detection and tracking in 3D LiDAR scans , 2016, 2016 IEEE International Conference on Robotics and Automation (ICRA).

[53]  Xin Zhang,et al.  End to End Learning for Self-Driving Cars , 2016, ArXiv.

[54]  Nikolaus Hansen,et al.  The CMA Evolution Strategy: A Tutorial , 2016, ArXiv.

[55]  Bernhard Sendhoff,et al.  A Reference Vector Guided Evolutionary Algorithm for Many-Objective Optimization , 2016, IEEE Transactions on Evolutionary Computation.

[56]  Ji Zhang,et al.  LOAM: Lidar Odometry and Mapping in Real-time , 2014, Robotics: Science and Systems.

[57]  Andreas Geiger,et al.  Are we ready for autonomous driving? The KITTI vision benchmark suite , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[58]  W. Brockherde,et al.  SPAD Smart Pixel for Time-of-Flight and Time-Correlated Single-Photon Counting Measurements , 2012, IEEE Photonics Journal.

[59]  Alan C. Bovik,et al.  Automatic parameter prediction for image denoising algorithms using perceptual quality features , 2012, Electronic Imaging.

[60]  Ralph Helmar Rasshofer,et al.  Influences of weather phenomena on automotive laser radar systems , 2011 .

[61]  Qingfu Zhang,et al.  MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition , 2007, IEEE Transactions on Evolutionary Computation.

[62]  Nicola Beume,et al.  SMS-EMOA: Multiobjective selection based on dominated hypervolume , 2007, Eur. J. Oper. Res..

[63]  Kalyanmoy Deb,et al.  Reference point based multi-objective optimization using evolutionary algorithms , 2006, GECCO.

[64]  Marco Laumanns,et al.  Combining Convergence and Diversity in Evolutionary Multiobjective Optimization , 2002, Evolutionary Computation.

[65]  Robert L. Cook,et al.  A Reflectance Model for Computer Graphics , 1987, TOGS.

[66]  Robert L Cook,et al.  A reflectance model for computer graphics , 1981, SIGGRAPH '81.

[67]  G. Turin,et al.  An introduction to matched filters , 1960, IRE Trans. Inf. Theory.

[68]  Felix Heide,et al.  Supplementary Information Differentiable Compound Optics and Processing Pipeline Optimization for End-to-end Camera Design , 2021 .

[69]  Dongeek Shin,et al.  Computational imaging with small numbers of photons , 2016 .

[70]  Jean-François Lalonde,et al.  Towards Characterizing the Behavior of LiDARs in Snowy Conditions , 2015 .