Structural Vulnerability and Robustness in Complex Networks: Different Approaches and Relationships Between them

The concept of vulnerability in the context of complex networks quantifies the capacity of a network to maintain its functional performance under random damages, malicious attacks, or malfunctions of any kind. Different types of networks and different applications suggest different approaches to the concept of networks structural vulnerability depending on the aspect we focus upon. In this introductory chapter, we discuss some different approaches and relationships amongst them.

[1]  S. Havlin,et al.  Breakdown of the internet under intentional attack. , 2000, Physical review letters.

[2]  P. Bonacich Factoring and weighting approaches to status scores and clique identification , 1972 .

[3]  Piet Van Mieghem,et al.  Performance analysis of communications networks and systems , 2006 .

[4]  Leonard M. Freeman,et al.  A set of measures of centrality based upon betweenness , 1977 .

[5]  Miguel Romance,et al.  Analytical relationships between metric and centrality measures of a network and its dual , 2011, J. Comput. Appl. Math..

[6]  Frank Harary,et al.  Graph Theory , 2016 .

[7]  Fan Chung,et al.  Spectral Graph Theory , 1996 .

[8]  Gourab Ghoshal,et al.  Bicomponents and the robustness of networks to failure. , 2007, Physical review letters.

[9]  Albert-László Barabási,et al.  Error and attack tolerance of complex networks , 2000, Nature.

[10]  Paul Jeffrey,et al.  Complex network analysis of water distribution systems , 2011, Chaos.

[11]  Miguel Romance,et al.  New results on computable efficiency and its stability for complex networks , 2006 .

[12]  K. Goh,et al.  Spectra and eigenvectors of scale-free networks. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[13]  A. Gibbons Algorithmic Graph Theory , 1985 .

[14]  Massimo Marchiori,et al.  Error and attacktolerance of complex network s , 2004 .

[15]  A. Barabasi,et al.  Lethality and centrality in protein networks , 2001, Nature.

[16]  Miguel Romance,et al.  Efficiency, Vulnerability and Cost: an Overview with Applications to Subway Networks Worldwide , 2007, Int. J. Bifurc. Chaos.

[17]  B. Mohar Some applications of Laplace eigenvalues of graphs , 1997 .

[18]  Min Ouyang,et al.  A methodological approach to analyze vulnerability of interdependent infrastructures , 2009, Simul. Model. Pract. Theory.

[19]  D. Cvetkovic,et al.  Eigenspaces of graphs: Bibliography , 1997 .

[20]  V. Gol'dshtein,et al.  Vulnerability and Hierarchy of Complex Networks , 2004, cond-mat/0409298.

[21]  M. Serrano,et al.  Generalized percolation in random directed networks. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[22]  R. Merris Laplacian matrices of graphs: a survey , 1994 .

[23]  Miguel Romance,et al.  A Node-Based Multiscale Vulnerability of Complex Networks , 2009, Int. J. Bifurc. Chaos.

[24]  Massimo Marchiori,et al.  Vulnerability and protection of infrastructure networks. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[25]  M E J Newman,et al.  Finding and evaluating community structure in networks. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[26]  Gordon F. Royle,et al.  Algebraic Graph Theory , 2001, Graduate texts in mathematics.

[27]  R. Criado,et al.  (Psi,p,q)-vulnerabilities: a unified approach to network robustness. , 2009, Chaos.

[28]  Lucas Antiqueira,et al.  Analyzing and modeling real-world phenomena with complex networks: a survey of applications , 2007, 0711.3199.

[29]  Reinhard Diestel,et al.  Graph Theory , 1997 .

[30]  Albert-László Barabási,et al.  Statistical mechanics of complex networks , 2001, ArXiv.

[31]  D. Cvetkovic,et al.  Spectra of Graphs: Theory and Applications , 1997 .

[32]  Cohen,et al.  Resilience of the internet to random breakdowns , 2000, Physical review letters.

[33]  Piet Van Mieghem,et al.  On the Robustness of Complex Networks by Using the Algebraic Connectivity , 2008, Networking.

[34]  A. Barabasi,et al.  Percolation in directed scale-free networks. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[35]  Miguel Romance,et al.  Improvements in performance and security for complex networks , 2009, Int. J. Comput. Math..

[36]  Massimo Marchiori,et al.  How the science of complex networks can help developing strategies against terrorism , 2004 .

[37]  Julio M. Ottino,et al.  Complex networks , 2004, Encyclopedia of Big Data.

[38]  F. Chung,et al.  Spectra of random graphs with given expected degrees , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[39]  A. Barabasi,et al.  Spectra of "real-world" graphs: beyond the semicircle law. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[40]  Réka Albert,et al.  Structural vulnerability of the North American power grid. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[41]  V Latora,et al.  Efficient behavior of small-world networks. , 2001, Physical review letters.

[42]  Adilson E Motter Cascade control and defense in complex networks. , 2004, Physical review letters.

[43]  R. Merris A survey of graph laplacians , 1995 .

[44]  Christos Faloutsos,et al.  Epidemic spreading in real networks: an eigenvalue viewpoint , 2003, 22nd International Symposium on Reliable Distributed Systems, 2003. Proceedings..

[45]  David I Blockley,et al.  A theory of structural vulnerability , 1999 .

[46]  Miguel Romance,et al.  Probabilistic analysis of efficiency and vulnerability in the Erdös–Rénji model , 2008, Int. J. Comput. Math..

[47]  Albert-László Barabási,et al.  Internet: Diameter of the World-Wide Web , 1999, Nature.

[48]  M. Fiedler Algebraic connectivity of graphs , 1973 .

[49]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[50]  V. Latora,et al.  Complex networks: Structure and dynamics , 2006 .

[51]  Stefano Boccaletti,et al.  Vulnerability and Fall of Efficiency in Complex Networks: a New Approach with Computational Advantages , 2009, Int. J. Bifurc. Chaos.

[52]  Thomas Fuhrmann,et al.  On the topology of overlay-networks , 2003, The 11th IEEE International Conference on Networks, 2003. ICON2003..

[53]  Ljupco Kocarev,et al.  Vulnerability of labeled networks , 2010 .

[54]  Carlos H. C. Ribeiro,et al.  A framework for vulnerability management in complex networks , 2009, 2009 International Conference on Ultra Modern Telecommunications & Workshops.

[55]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[56]  Mark E. J. Newman,et al.  The Structure and Function of Complex Networks , 2003, SIAM Rev..

[57]  S. N. Dorogovtsev,et al.  Evolution of networks , 2001, cond-mat/0106144.

[58]  K. Menger Zur allgemeinen Kurventheorie , 1927 .

[59]  M A P Taylor,et al.  Network Vulnerability: An Approach to Reliability Analysis at the Level of National Strategic Transport Networks , 2003 .

[60]  V. Latora,et al.  A measure of centrality based on network efficiency , 2004, cond-mat/0402050.

[61]  Silvia Gago,et al.  Spectral Techniques in Complex Networks , 2011 .

[62]  János Kertész,et al.  Clustering in complex networks , 2004 .

[63]  Fan Chung Graham,et al.  The Spectra of Random Graphs with Given Expected Degrees , 2004, Internet Math..

[64]  J. A. Rodríguez-Velázquez,et al.  Subgraph centrality in complex networks. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[65]  Ferenc Juhász,et al.  The asymptotic behaviour of Fiedler's algebraic connectivity for random graphs , 1991, Discret. Math..

[66]  Zhejing Bao,et al.  Comparison of cascading failures in small-world and scale-free networks subject to vertex and edge attacks , 2009 .

[67]  J. A. Rodríguez,et al.  Functional centrality in graphs , 2006, math/0610141.

[68]  Miguel Castro,et al.  Should we build Gnutella on a structured overlay? , 2004, Comput. Commun. Rev..

[69]  Anthony H. Dekker,et al.  Network Robustness and Graph Topology , 2004, ACSC.

[70]  Hongzhong Deng,et al.  Vulnerability of complex networks under intentional attack with incomplete information , 2007 .

[71]  Mark E. J. Newman,et al.  Structure and Dynamics of Networks , 2009 .

[72]  T. S. Evans,et al.  Complex networks , 2004 .

[73]  L. da F. Costa,et al.  Characterization of complex networks: A survey of measurements , 2005, cond-mat/0505185.

[74]  Francesc Comellas,et al.  Spectral bounds for the betweenness of a graph , 2007 .

[75]  Adilson E Motter,et al.  Cascade-based attacks on complex networks. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[76]  Igor Mishkovski,et al.  Vulnerability of complex networks , 2011 .

[77]  Bojan Mohar,et al.  Laplace eigenvalues of graphs - a survey , 1992, Discret. Math..

[78]  S. Strogatz Exploring complex networks , 2001, Nature.

[79]  Phillip Bonacich,et al.  Eigenvector-like measures of centrality for asymmetric relations , 2001, Soc. Networks.

[80]  A. Arenas,et al.  Community analysis in social networks , 2004 .

[81]  Béla Bollobás,et al.  Random Graphs: Notation , 2001 .

[82]  Ake J Holmgren,et al.  Using Graph Models to Analyze the Vulnerability of Electric Power Networks , 2006, Risk analysis : an official publication of the Society for Risk Analysis.

[83]  Massimo Marchiori,et al.  Economic small-world behavior in weighted networks , 2003 .

[84]  B. Mohar THE LAPLACIAN SPECTRUM OF GRAPHS y , 1991 .

[85]  Colin Boyd,et al.  Protocols for Key Establishment and Authentication , 2003 .

[86]  Ernesto Estrada,et al.  Network robustness to targeted attacks. The interplay of expansibility and degree distribution , 2006 .

[87]  D. Cvetkovic,et al.  Recent Results in the Theory of Graph Spectra , 2012 .

[88]  David I Blockley,et al.  VULNERABILITY OF SYSTEMS , 2001 .

[89]  M. Newman,et al.  Finding community structure in networks using the eigenvectors of matrices. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[90]  Beom Jun Kim,et al.  Attack vulnerability of complex networks. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[91]  Ana Paula Couto da Silva,et al.  On the joint dynamics of network diameter and spectral gap under node removal , 2010 .

[92]  Regino Criado,et al.  Choosing a leader on a complex network , 2007 .

[93]  Francesc Comellas,et al.  Synchronizability of complex networks , 2007 .

[94]  Miguel Romance,et al.  Effective measurement of network vulnerability under random and intentional attacks , 2005, J. Math. Model. Algorithms.

[95]  Mark Newman,et al.  Networks: An Introduction , 2010 .

[96]  Map Taylor,et al.  CONCEPTS OF NETWORK VULNERABILITY AND APPLICATIONS TO THE IDENTIFICATION OF CRITICAL ELEMENTS OF TRANSPORT INFRASTRUCTURE , 2003 .

[97]  M E J Newman,et al.  Community structure in social and biological networks , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[98]  Marián Boguñá,et al.  Clustering in complex networks. II. Percolation properties. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[99]  David I Blockley,et al.  Vulnerability of structural systems , 2003 .

[100]  Miguel Romance,et al.  Optimal communication schemes in a complex network: From trees to bottleneck networks , 2007 .

[101]  Sergey Brin,et al.  The Anatomy of a Large-Scale Hypertextual Web Search Engine , 1998, Comput. Networks.

[102]  A. Jamakovic,et al.  On the relationship between the algebraic connectivity and graph's robustness to node and link failures , 2007, 2007 Next Generation Internet Networks.

[103]  V. Latora,et al.  Efficiency of scale-free networks: error and attack tolerance , 2002, cond-mat/0205601.

[104]  Katja Berdica,et al.  AN INTRODUCTION TO ROAD VULNERABILITY: WHAT HAS BEEN DONE, IS DONE AND SHOULD BE DONE , 2002 .

[105]  V. Latora,et al.  Multiscale vulnerability of complex networks. , 2007, Chaos.

[106]  Bojan Mohar,et al.  Eigenvalues, diameter, and mean distance in graphs , 1991, Graphs Comb..

[107]  Paul Jeffrey,et al.  A note on measurement of network vulnerability under random and intentional attacks , 2010, ArXiv.

[108]  Hilary Risser Social Networks Analysis , 2013 .

[109]  Béla Bollobás,et al.  Random Graphs , 1985 .

[110]  Vittorio Rosato,et al.  Growth mechanisms of the AS-level Internet network , 2004 .