Progress in state-of-the-art technologies of Ga2O3 devices

Gallium oxide (Ga2O3), an emerging ultra-wide-bandgap semiconductor, has the desirable properties of a large bandgap of 4.6–4.9 eV, an estimated critical breakdown field of 8 MV cm−1, decent electron mobility of 250 cm2 V s−1 and high theoretical Baliga figures of merit (BFOMs) of around 3000. Bolstered by their capability of an economical growth technique for high-quality bulk substrate, β-Ga2O3-based materials and devices have been highly sought after in recent years for power electronics and solar-blind ultraviolet photodetectors. This article reviews the most recent advances in β-Ga2O3 power device technologies. It will begins with a summary of the field and underlying semiconductor properties of Ga2O3, followed by a review of the growth methods of high-quality β-Ga2O3 bulk substrates and epitaxial thin films. Then, brief perspectives on the advanced technologies and measurements in terms of ohmic contact and interface state are provided. Furthermore, some state-of-the-art β-Ga2O3 photoelectronic devices, power devices and radiofrequency devices with distinguished performance are fully described and discussed. Some solutions to alleviating challenging issues, including the difficulty in p-type doping, low thermal conductivity and low mobility, are also presented and explored.

[1]  K. Nakajima,et al.  Characterization of transparent and conducting Sn-doped β-Ga2O3 single crystal after annealing , 2008 .

[2]  Akito Kuramata,et al.  Device-Quality β-Ga2O3 Epitaxial Films Fabricated by Ozone Molecular Beam Epitaxy , 2012 .

[3]  O. Bierwagen,et al.  Perovskite Sr‐Doped LaCrO3 as a New p‐Type Transparent Conducting Oxide , 2015, Advanced materials.

[4]  C. Humphreys,et al.  High-quality III-nitride films on conductive, transparent (2̅01)-oriented β-Ga2O3 using a GaN buffer layer , 2016, Scientific Reports.

[5]  F. Bechstedt,et al.  Quasiparticle bands and spectra of Ga 2 O 3 polymorphs , 2016 .

[6]  Xin Zhou,et al.  Tailoring the electronic structure of β-Ga2O3 by non-metal doping from hybrid density functional theory calculations. , 2015, Physical chemistry chemical physics : PCCP.

[7]  Roberto Fornari,et al.  Crystal Structure and Ferroelectric Properties of ε-Ga2O3 Films Grown on (0001)-Sapphire. , 2016, Inorganic chemistry.

[8]  S. Lodha,et al.  Delta Doped $\beta$ -Ga2O3 Field Effect Transistors With Regrown Ohmic Contacts , 2018, IEEE Electron Device Letters.

[9]  Jaime A. Freitas,et al.  Homoepitaxial growth of β-Ga2O3 thin films by low pressure chemical vapor deposition , 2016 .

[10]  Zbigniew Galazka,et al.  $\beta$ -Ga2O3 MOSFETs for Radio Frequency Operation , 2017, IEEE Electron Device Letters.

[11]  S. Fujita,et al.  Reduction in edge dislocation density in corundum-structured α-Ga2O3 layers on sapphire substrates with quasi-graded α-(Al,Ga)2O3 buffer layers , 2016 .

[12]  S. Fujita,et al.  Heteroepitaxy of Corundum-Structured α-Ga2O3 Thin Films on α-Al2O3 Substrates by Ultrasonic Mist Chemical Vapor Deposition , 2008 .

[13]  K. Hoshikawa,et al.  Growth of β-Ga2O3 single crystals using vertical Bridgman method in ambient air , 2016 .

[14]  Yingmin Luo,et al.  Effect of growth pressure on the characteristics of β-Ga2O3 films grown on GaAs (1 0 0) substrates by MOCVD method , 2015 .

[15]  R. Davis,et al.  Investigation of Different Metals as Ohmic Contacts to β-Ga2O3: Comparison and Analysis of Electrical Behavior, Morphology, and Other Physical Properties , 2017, Journal of Electronic Materials.

[16]  Kenichi Suzuki,et al.  Crystal growth of β-Ga2O3 by electric current heating method , 2003 .

[17]  P. Couturier Japan , 1988, The Lancet.

[18]  S. Long,et al.  Enhancement‐Mode β‐Ga2O3 Metal‐Oxide‐Semiconductor Field‐Effect Transistor with High Breakdown Voltage over 3000 V Realized by Oxygen Annealing , 2019, physica status solidi (RRL) – Rapid Research Letters.

[19]  N. Esser,et al.  Surface properties of annealed semiconducting β-Ga2O3 (1 0 0) single crystals for epitaxy , 2015 .

[20]  F. Ren,et al.  Ohmic contacts on n-type β-Ga2O3 using AZO/Ti/Au , 2017 .

[21]  J. L. Lyons A survey of acceptor dopants for β-Ga2O3 , 2018 .

[22]  H. Y. Playford,et al.  Characterization of Structural Disorder in γ-Ga2O3 , 2014 .

[23]  Zexuan Zhang,et al.  Breakdown mechanism in 1 kA/cm2 and 960 V E-mode β-Ga2O3 vertical transistors , 2018, Applied Physics Letters.

[24]  K. Shimamura,et al.  Halide vapor phase epitaxy of twin-free α-Ga2O3 on sapphire (0001) substrates , 2015 .

[25]  H. H. Tippins Optical Absorption and Photoconductivity in the Band Edge of β − Ga 2 O 3 , 1965 .

[26]  T. Kawaharamura Physics on development of open-air atmospheric pressure thin film fabrication technique using mist droplets: Control of precursor flow , 2014 .

[27]  Y. Nakata,et al.  Normally-Off Ga2O3 MOSFETs With Unintentionally Nitrogen-Doped Channel Layer Grown by Plasma-Assisted Molecular Beam Epitaxy , 2019, IEEE Electron Device Letters.

[28]  S. Fujita,et al.  Evolution of corundum-structured III-oxide semiconductors: Growth, properties, and devices , 2016 .

[29]  J. Speck,et al.  Systematic investigation of the growth rate of β-Ga2O3(010) by plasma-assisted molecular beam epitaxy , 2014 .

[30]  P. Ye,et al.  Thermodynamic Studies of β-Ga2O3 Nanomembrane Field-Effect Transistors on a Sapphire Substrate , 2017, ACS omega.

[31]  S. Yamakoshi,et al.  Homoepitaxial growth of β-Ga2O3 layers by halide vapor phase epitaxy , 2014 .

[32]  Steffen Ganschow,et al.  Scaling-Up of Bulk β-Ga2O3 Single Crystals by the Czochralski Method , 2017 .

[33]  S. Long,et al.  Source-Field-Plated $\beta$ -Ga2O3 MOSFET With Record Power Figure of Merit of 50.4 MW/cm2 , 2019, IEEE Electron Device Letters.

[34]  Uttam Singisetti,et al.  Interface State Density in Atomic Layer Deposited SiO 2 / $\beta $ -Ga 2 O 3 ( $\bar {2}01$ ) MOSCAPs , 2016 .

[35]  Akito Kuramata,et al.  Field-Plated Ga2O3 MOSFETs With a Breakdown Voltage of Over 750 V , 2016, IEEE Electron Device Letters.

[36]  Joel B. Varley,et al.  Role of self-trapping in luminescence and p -type conductivity of wide-band-gap oxides , 2012 .

[37]  K. Hobart,et al.  Editors' Choice Communication—A (001) β-Ga2O3 MOSFET with +2.9 V Threshold Voltage and HfO2 Gate Dielectric , 2016 .

[38]  Bin Li,et al.  Growth and spectral characterization of β-Ga2O3 single crystals , 2006 .

[39]  Kiyoshi Shimamura,et al.  Epitaxial growth of phase-pure ε-Ga2O3 by halide vapor phase epitaxy , 2015 .

[40]  S. J. Pearton,et al.  Perspective—Opportunities and Future Directions for Ga2O3 , 2017 .

[41]  M. Tadjer,et al.  Solar-Blind Metal-Semiconductor-Metal Photodetectors Based on an Exfoliated β-Ga2O3 Micro-Flake , 2017 .

[42]  Wanfeng Xie,et al.  First-principles study on electronic structure and optical properties of Sn-doped β-Ga2O3 , 2010 .

[43]  Linpeng Dong,et al.  Ab initio study of N-doped β-Ga2O3 with intrinsic defects: the structural, electronic and optical properties , 2017 .

[44]  Zbigniew Galazka,et al.  3.8-MV/cm Breakdown Strength of MOVPE-Grown Sn-Doped $\beta $ -Ga2O3 MOSFETs , 2016, IEEE Electron Device Letters.

[45]  M. Baldini,et al.  Effect of indium as a surfactant in (Ga1−xInx)2O3 epitaxial growth on β-Ga2O3 by metal organic vapour phase epitaxy , 2015 .

[46]  Kei May Lau,et al.  Influence of oxidation and annealing temperatures on quality of Ga2O3 film grown on GaN , 2006 .

[47]  Huili Grace Xing,et al.  Enhancement-Mode Ga2O3 Vertical Transistors With Breakdown Voltage >1 kV , 2018, IEEE Electron Device Letters.

[48]  K. Shimamura,et al.  Quasi-heteroepitaxial growth of β-Ga2O3 on off-angled sapphire (0 0 0 1) substrates by halide vapor phase epitaxy , 2015 .

[49]  Siddharth Rajan,et al.  High responsivity in molecular beam epitaxy grown beta-Ga2O3 metal semiconductor metal solar blind deep-UV photodetector , 2017, 1702.04470.

[50]  U. Singisetti,et al.  Field-Plated Lateral Ga2O3 MOSFETs With Polymer Passivation and 8.03 kV Breakdown Voltage , 2020, IEEE Electron Device Letters.

[51]  Y. Hao,et al.  Lateral β-Ga2O3 MOSFETs With High Power Figure of Merit of 277 MW/cm2 , 2020, IEEE Electron Device Letters.

[52]  Mengwei Si,et al.  The Impact of Substrates on the Performance of Top-Gate p-Ga203 Field-Effect Transistors: Record High Drain Current of 980 mA/mm on Diamond , 2018, 2018 76th Device Research Conference (DRC).

[53]  Reinhard Uecker,et al.  On the bulk β-Ga2O3 single crystals grown by the Czochralski method , 2014 .

[54]  Hyoun-woo Kim,et al.  Growth of gallium oxide thin films on silicon by the metal organic chemical vapor deposition method , 2004 .

[55]  S. Yamakoshi,et al.  All-ion-implanted planar-gate current aperture vertical Ga2O3 MOSFETs with Mg-doped blocking layer , 2018, Applied Physics Express.

[56]  C. Walle,et al.  The electronic structure of β-Ga2O3 , 2010 .

[57]  Gary S. Tompa,et al.  Large-Area MOCVD Growth of Ga2O3 in a Rotating Disc Reactor , 2015, Journal of Electronic Materials.

[58]  Alex Zunger,et al.  Practical doping principles , 2003 .

[59]  Peter Reiche,et al.  Czochralski grown Ga2O3 crystals , 2000 .

[60]  S. Yamakoshi,et al.  Anisotropy, phonon modes, and free charge carrier parameters in monoclinic β-gallium oxide single crystals , 2015, 1512.08590.

[61]  A. N. Smirnov,et al.  Epitaxial growth of (2¯01) β-Ga2O3 on (0001) sapphire substrates by halide vapour phase epitaxy , 2016 .

[62]  Zbigniew Galazka,et al.  Structural properties of Si-doped β-Ga2O3 layers grown by MOVPE , 2014 .

[63]  Reinhard Uecker,et al.  Electrical properties of β-Ga2O3 single crystals grown by the Czochralski method , 2011 .

[64]  A. Janotti,et al.  Bismuth-doped Ga2O3 as candidate for p-type transparent conducting material , 2019, 1906.00840.

[65]  M. Yoshimoto,et al.  Heteroepitaxial growth of ε-Ga2O3 thin films on cubic (111) MgO and (111) yttria-stablized zirconia substrates by mist chemical vapor deposition , 2016 .

[66]  Chongwu Zhou,et al.  Quasi-two-dimensional β-Ga2O3 field effect transistors with large drain current density and low contact resistance via controlled formation of interfacial oxygen vacancies , 2018, Nano Research.

[67]  M. Baldini,et al.  Evolution of planar defects during homoepitaxial growth of β-Ga2O3 layers on (100) substrates—A quantitative model , 2016 .

[68]  P. Tasker,et al.  Pulsed Large Signal RF Performance of Field-Plated Ga2O3 MOSFETs , 2018, IEEE Electron Device Letters.

[69]  Guojia Fang,et al.  p‐type transparent conducting oxides , 2006 .

[70]  Weihua Tang,et al.  Oxygen vacancy tuned Ohmic-Schottky conversion for enhanced performance in β-Ga2O3 solar-blind ultraviolet photodetectors , 2014 .

[71]  Uttam Singisetti,et al.  1.85 kV Breakdown Voltage in Lateral Field-Plated Ga2O3 MOSFETs , 2018, IEEE Electron Device Letters.

[72]  R. Fornari,et al.  Schottky barrier height of Au on the transparent semiconducting oxide β-Ga2O3 , 2012 .

[73]  Hongfang Wang,et al.  Investigation of Power Semiconductor Devices for High Frequency High Density Power Converters , 2007 .

[74]  ε-Ga₂O₃: A Promising Candidate for High-Electron-Mobility Transistors , 2020, IEEE Electron Device Letters.

[75]  Y. Hao,et al.  Normally-Off- $\beta$ -Ga2O3 Power MOSFET With Ferroelectric Charge Storage Gate Stack Structure , 2020, IEEE Electron Device Letters.

[76]  S. Morimoto,et al.  Stoichiometric control for heteroepitaxial growth of smooth ε-Ga2O3 thin films on c-plane AlN templates by mist chemical vapor deposition , 2017 .

[77]  P. Hering,et al.  The band alignment of Cu2O/ZnO and Cu2O/GaN heterostructures , 2012 .

[78]  J. L. Lyons,et al.  Deep acceptors and their diffusion in Ga2O3 , 2019, APL Materials.

[79]  S. Yamakoshi,et al.  Structural evaluation of defects in β-Ga2O3 single crystals grown by edge-defined film-fed growth process , 2016 .

[80]  S. Fujita,et al.  Epitaxial growth of corundum-structured wide band gap III-oxide semiconductor thin films , 2014 .

[81]  Steffen Ganschow,et al.  Czochralski growth and characterization of β‐Ga2O3 single crystals , 2010 .

[82]  Jonathan P. McCandless,et al.  Recessed-Gate Enhancement-Mode $\beta $ -Ga2O3 MOSFETs , 2018, IEEE Electron Device Letters.

[83]  Y. Kumagai,et al.  Enhancement-Mode $\beta$ -Ga2O3 Current Aperture Vertical MOSFETs With N-Ion-Implanted Blocker , 2020, IEEE Electron Device Letters.

[84]  J. Wager,et al.  Transparent Electronics , 2003, Science.

[85]  Hideo Hosono,et al.  Anisotropy of electrical and optical properties in β-Ga2O3 single crystals , 1997 .

[86]  Debdeep Jena,et al.  Field-plated Ga2O3 Trench Schottky Barrier Diodes with a Record High Figure-of-merit of 0.78 GW/cm2 , 2019, 2019 Device Research Conference (DRC).

[87]  Phase diagram and polarization of stable phases of (Ga1− x In x )2O3 , 2015, 1512.06570.

[88]  S. Miyajima,et al.  Effect of post-deposition annealing on low temperature metalorganic chemical vapor deposited gallium oxide related materials , 2017 .

[89]  H. Akazawa Formation of various phases of gallium oxide films depending on substrate planes and deposition gases , 2016 .

[90]  N. Alwadai,et al.  High-Efficiency InGaN/GaN Quantum Well-Based Vertical Light-Emitting Diodes Fabricated on β-Ga2O3 Substrate. , 2017, ACS applied materials & interfaces.

[91]  Jared M. Johnson,et al.  Demonstration of high mobility and quantum transport in modulation-doped β-(AlxGa1-x)2O3/Ga2O3 heterostructures , 2018 .

[92]  R. Pandey,et al.  Electronic and thermodynamic properties of β-Ga2O3 , 2006 .

[93]  Y. Kumagai,et al.  State-of-the-art technologies of gallium oxide power devices , 2017 .

[94]  Stephen J. Pearton,et al.  A review of Ga2O3 materials, processing, and devices , 2018 .

[95]  Godhuli Sinha,et al.  Sol-gel derived phase pure α-Ga2O3 nanocrystalline thin film and its optical properties , 2005 .

[96]  G. Jessen,et al.  Sub-Micron Gallium Oxide Radio Frequency Field-Effect Transistors , 2018, 2018 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP).

[97]  Richard Dronskowski,et al.  Formation of spinel-type gallium oxynitrides: a density-functional study of binary and ternary phases in the system Ga-O-N , 2005 .

[98]  Xiaodong Yan,et al.  Vertical Ga2O3 Schottky Barrier Diodes With Small-Angle Beveled Field Plates: A Baliga’s Figure-of-Merit of 0.6 GW/cm2 , 2019, IEEE Electron Device Letters.

[99]  T. Kaneko,et al.  Creation of Nanoparticle–Nanotube Conjugates for Life-Science Application Using Gas–Liquid Interfacial Plasmas , 2012 .

[100]  James S. Speck,et al.  Ge doping of β-Ga2O3 films grown by plasma-assisted molecular beam epitaxy , 2017 .

[101]  Yoshiaki Nakata,et al.  Enhancement-mode Ga2O3 MOSFETs with Si-ion-implanted source and drain , 2017 .

[102]  Ali Shakouri,et al.  β-Ga2O3 on insulator field-effect transistors with drain currents exceeding 1.5 A/mm and their self-heating effect , 2017, 1703.06197.

[103]  J. Muth,et al.  Anisotropic thermal conductivity of β-Ga2O3 at elevated temperatures: Effect of Sn and Fe dopants , 2017 .

[104]  J. Mun,et al.  Editors' Choice—2.32 kV Breakdown Voltage Lateral β-Ga2O3 MOSFETs with Source-Connected Field Plate , 2019, ECS Journal of Solid State Science and Technology.

[105]  J. Woicik,et al.  Origin of the Bipolar Doping Behavior of SnO from X-ray Spectroscopy and Density Functional Theory , 2013 .

[106]  K. Shimamura,et al.  Epitaxial relationship between wurtzite GaN and β-Ga2O3 , 2007 .

[107]  I. Nikitina,et al.  Growth and characterization of β-Ga2O3 crystals , 2017 .

[108]  Akito Kuramata,et al.  High-quality β-Ga2O3 single crystals grown by edge-defined film-fed growth , 2016 .

[109]  Jaime A. Freitas,et al.  Structural, Optical, and Electrical Characterization of Monoclinic β-Ga2O3 Grown by MOVPE on Sapphire Substrates , 2016, Journal of Electronic Materials.

[110]  O. Bierwagen,et al.  Perovskite Sr‐Doped LaCrO3 as a New p‐Type Transparent Conducting Oxide , 2015, Advanced materials.

[111]  M. Furuta,et al.  Metal-Semiconductor Field-Effect Transistors With In–Ga–Zn–O Channel Grown by Nonvacuum-Processed Mist Chemical Vapor Deposition , 2015, IEEE Electron Device Letters.

[112]  Y. Kumagai,et al.  Electron effective mass in Sn-doped monoclinic single crystal β-gallium oxide determined by mid-infrared optical Hall effect , 2017, 1710.10094.

[113]  Eldad Bahat Treidel,et al.  Lateral 1.8 kV $\beta$ -Ga2O3 MOSFET With 155 MW/cm2 Power Figure of Merit , 2019, IEEE Electron Device Letters.

[114]  Z. Li,et al.  Transparent conducting tin-doped Ga2O3 films deposited on MgAl2O4 (100) substrates by MOCVD , 2015 .

[115]  Y. Hao,et al.  High-Performance Vertical $\beta$ -Ga2O3 Schottky Barrier Diode With Implanted Edge Termination , 2019, IEEE Electron Device Letters.

[116]  Holger von Wenckstern,et al.  Group‐III Sesquioxides: Growth, Physical Properties and Devices , 2017 .

[117]  Z. Li,et al.  Preparation and characterization of Sn-doped β-Ga2O3 homoepitaxial films by MOCVD , 2015, Journal of Materials Science.

[118]  Andreas Fiedler,et al.  Semiconducting Sn-doped β-Ga2O3 homoepitaxial layers grown by metal organic vapour-phase epitaxy , 2016, Journal of Materials Science.

[119]  Z. Li,et al.  Synthesis of monoclinic structure gallium oxide epitaxial film on MgAl6O10 (100) , 2013 .

[120]  P. Ye,et al.  Al2O3/ $\beta $ -Ga2O3(-201) Interface Improvement Through Piranha Pretreatment and Postdeposition Annealing , 2016, IEEE Electron Device Letters.

[121]  Cui Qiliang,et al.  High-Pressure and High-Temperature Behaviour of Gallium Oxide , 2008 .

[122]  Ya. I. Rym,et al.  Optical absorption and photoconductivity at the band edge of β‐Ga2−xInxO3 , 1996 .

[123]  Y. Hao,et al.  Field-Plated Lateral $\beta$ -Ga2O3 Schottky Barrier Diode With High Reverse Blocking Voltage of More Than 3 kV and High DC Power Figure-of-Merit of 500 MW/cm2 , 2018, IEEE Electron Device Letters.

[124]  Kevin D. Leedy,et al.  Enhancement-mode Ga2O3 wrap-gate fin field-effect transistors on native (100) β-Ga2O3 substrate with high breakdown voltage , 2016 .

[125]  R. L. Peterson,et al.  Interfacial reactions of titanium/gold ohmic contacts with Sn-doped β-Ga2O3 , 2019, APL Materials.

[126]  Y. Hao,et al.  First Demonstration of Waferscale Heterogeneous Integration of Ga2O3 MOSFETs on SiC and Si Substrates by Ion-Cutting Process , 2019, 2019 IEEE International Electron Devices Meeting (IEDM).

[127]  U. Singisetti,et al.  A field-plated Ga2O3 MOSFET with near 2-kV breakdown voltage and 520 mΩ · cm2 on-resistance , 2019, Applied Physics Express.

[128]  C. Walle,et al.  Experimental electronic structure of In2O3 and Ga2O3 , 2011 .

[129]  Hong Zhou,et al.  High-Performance Depletion/Enhancement-ode $\beta$ -Ga2O3 on Insulator (GOOI) Field-Effect Transistors With Record Drain Currents of 600/450 mA/mm , 2016, IEEE Electron Device Letters.

[130]  A. Osinsky,et al.  Fast growth rate of epitaxial β-Ga 2 O 3 by close coupled showerhead MOCVD , 2017 .

[131]  S. Yamakoshi,et al.  Formation of indium–tin oxide ohmic contacts for β-Ga2O3 , 2016 .

[132]  Zhen Zhu,et al.  Structural and optical properties of Ga2O3:In films deposited on MgO (1 0 0) substrates by MOCVD , 2011 .

[133]  Jin Ma,et al.  Characterization of β-Ga2O3 thin films on sapphire (0001) using metal-organic chemical vapor deposition technique , 2012 .

[134]  Kazuo Nakajima,et al.  Fabrication and characterization of transparent conductive Sn-doped β-Ga2O3 single crystal , 2007 .

[135]  E. Víllora,et al.  Infrared Reflectance and Electrical Conductivity of β‐Ga2O3 , 2002 .

[136]  C. Minot,et al.  Relation between Electron Band Structure and Magnetic Bistability of Conduction Electrons in β-Ga2O3 , 1994 .

[137]  A. Ohtomo,et al.  Epitaxial growth of γ-Ga2O3 films by mist chemical vapor deposition , 2012 .

[138]  S. Morimoto,et al.  Epitaxial growth of α-Ga2O3 thin films on a-, m-, and r-plane sapphire substrates by mist chemical vapor deposition using α-Fe2O3 buffer layers , 2017 .

[139]  S. Dhar,et al.  Interface trapping in (2¯01) β-Ga2O3 MOS capacitors with deposited dielectrics , 2018 .

[140]  S. Yamakoshi,et al.  Depletion-mode vertical Ga2O3 trench MOSFETs fabricated using Ga2O3 homoepitaxial films grown by halide vapor phase epitaxy , 2017 .

[141]  S. Lodha,et al.  $\beta$ -Ga2O3 Delta-Doped Field-Effect Transistors With Current Gain Cutoff Frequency of 27 GHz , 2019, IEEE Electron Device Letters.

[142]  Hyoun-woo Kim,et al.  Influence of postdeposition annealing on the properties of Ga2O3 films on SiO2 substrates , 2005 .

[143]  Epitaxial Growth of GaN on (1 0 0) β-Ga2O3 Substrates by Metalorganic Vapor Phase Epitaxy , 2005 .

[144]  Fujio Izumi,et al.  VESTA: a three-dimensional visualization system for electronic and structural analysis , 2008 .