1.3-μm InAs/GaAs quantum dots grown on Si substrates

[1]  G. Lian,et al.  Practical and Reproducible Mapping of Strains in Si Devices Using Geometric Phase Analysis of Annular Dark-Field Images From Scanning Transmission Electron Microscopy , 2010, IEEE Electron Device Letters.

[2]  H. Morkoç,et al.  High resolution electron microscopy of misfit dislocations in the GaAs/Si epitaxial interface , 1986 .

[3]  Alwyn J. Seeds,et al.  Optimisation of the dislocation filter layers in 1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates , 2015 .

[4]  D. Huffaker,et al.  Growth mechanisms of highly mismatched AlSb on a Si substrate , 2005 .

[5]  Zeyu Zhang,et al.  1.3 μm Submilliamp Threshold Quantum Dot Micro-lasers on Si , 2017 .

[6]  H. Usui,et al.  Morphology and lattice coherency in GaAs nanocrystals grown on Si(100) surface , 2006 .

[7]  W. Pompe,et al.  Modeling of Threading Dislocation Density Reduction in Heteroepitaxial Layers I. Geometry and Crystallography , 1996 .

[8]  Richard A. Hogg,et al.  Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate , 2011 .

[9]  Hyundai Park,et al.  A Hybrid AlGaInAs–Silicon Evanescent Amplifier , 2007, IEEE Photonics Technology Letters.

[10]  Aj Seeds,et al.  1.3µm InAs/GaAs Quantum-Dot Laser Monolithically Grown on Si Substrates Using InAlAs/GaAs Dislocation Filter Layers , 2014 .

[11]  John E. Bowers,et al.  High performance continuous wave 1.3 μm quantum dot lasers on silicon , 2014 .

[12]  David J. Dunstan,et al.  Design rules for dislocation filters , 2014 .

[13]  Yasuhiko Arakawa,et al.  Electrically pumped 1.3 microm room-temperature InAs/GaAs quantum dot lasers on Si substrates by metal-mediated wafer bonding and layer transfer. , 2010, Optics express.

[14]  Mark A. Eriksson,et al.  Practical design and simulation of silicon-based quantum-dot qubits , 2003 .

[15]  Qi Jiang,et al.  InAs/GaAs Quantum-Dot Lasers Monolithically Grown on Si, Ge, and Ge-on-Si Substrates , 2013, IEEE Journal of Selected Topics in Quantum Electronics.

[16]  H. Okamoto,et al.  Dislocation Reduction in GaAs on Si by Thermal Cycles and InGaAs/GaAs Strained-Layer Superlattices , 1987 .

[17]  Diana L. Huffaker,et al.  Self-organised quantum dots as dislocation filters: the case of GaAs-based lasers on silicon , 2006 .

[18]  Qisheng Chen,et al.  Schottky barrier detectors for visible-blind ultraviolet detection , 1997 .

[19]  Richard A. Hogg,et al.  The effect of growth temperature of GaAs nucleation layer on InAs/GaAs quantum dots monolithically grown on Ge substrates , 2012 .

[20]  Ying Ding,et al.  Elimination of Bimodal Size in InAs/GaAs Quantum Dots for Preparation of 1.3-μm Quantum Dot Lasers , 2018, Nanoscale Research Letters.

[21]  Di Liang,et al.  Recent progress in lasers on silicon , 2010 .

[22]  Hon Ki Tsang,et al.  Device engineering for silicon photonics , 2011 .

[23]  Martin Hÿtch,et al.  Quantitative measurement of displacement and strain fields from HREM micrographs , 1998 .

[24]  T. Tatsumi,et al.  In situ RHEED observation of selective diminution at Si(001)-2 × 1 superlattice spots during MBE , 1986 .

[25]  Young Heon Kim,et al.  Growth mode and structural characterization of GaSb on Si (001) substrate: A transmission electron microscopy study , 2006 .

[26]  Yasuhiko Arakawa,et al.  Room temperature continuous wave operation of InAs/GaAs quantum dot photonic crystal nanocavity laser on silicon substrate. , 2009, Optics express.

[27]  Alwyn J. Seeds,et al.  Electrically pumped continuous-wave 1.3-.spl mu/m InAs/GaAs quantum dot lasers monolithically grown on Si substrates , 2014 .

[28]  Richard Beanland,et al.  Dislocation filters in GaAs on Si , 2015 .

[29]  Swartz,et al.  Atomic-step rearrangement on Si(100) by interaction with arsenic and the implication for GaAs-on-Si epitaxy. , 1991, Physical review. B, Condensed matter.

[30]  Miles V. Klein,et al.  Growth and properties of GaAs/AlGaAs on nonpolar substrates using molecular beam epitaxy , 1985 .