Theoretical studies of the global minima and polarizabilities of small lithium clusters

Abstract Lithium clusters Lin (n = 1⿿20) have been investigated with density functional theory (DFT) and coupled-cluster (CC) methods. The global minima are located via an improved basin-hopping algorithm. Simulated polarizabilities are in good agreement with the measured data generally. The simulated polarizabilities for Li6, Li12 and Li19 are in reasonable agreement when thermal effects are included, except the Li3 cluster. A linear correlation for the inverse relationship between the CCSD calculated polarizabilities and ionization potential (IP) has been reported to have the linear coefficient of 0.996, which further strengthens our simulations.

[1]  P. Jørgensen,et al.  Singlet excitations and dipole polarizabilities of Li2, Li4 and Li8 clusters , 2000 .

[2]  P. Dugourd,et al.  Measurements of lithium cluster ionization potentials , 1992 .

[3]  D. Marx,et al.  Quantum and thermal fluctuation effects on the photoabsorption spectra of clusters. , 2004, Physical review letters.

[4]  Medium-size polarized basis sets for high-level-correlated calculations of molecular electric properties: III. Alkali (Li, Na, K, Rb) and alkaline-earth (Be, Mg, Ca, Sr) atoms , 1991 .

[5]  Jeff R. Hammond,et al.  Accurate dipole polarizabilities for water clusters n=2-12 at the coupled-cluster level of theory and benchmarking of various density functionals. , 2009, The Journal of chemical physics.

[6]  Niranjan Govind,et al.  Infrared and Raman Spectroscopy from Ab Initio Molecular Dynamics and Static Normal Mode Analysis: The C-H Region of DMSO as a Case Study. , 2016, The journal of physical chemistry. B.

[7]  Ab initio gradient corrected density functional molecular dynamics: investigation of structural and dynamical properties of the Li8 cluster , 1997 .

[8]  D. Marx,et al.  The role of quantum and thermal fluctuations upon properties of lithium clusters , 1999 .

[9]  C David Sherrill,et al.  High accuracy ab initio studies of Li6+, Li6-, and three isomers of Li6. , 2005, The Journal of chemical physics.

[10]  Swapan K. Ghosh,et al.  Relationship between Ionization Potential, Polarizability, and Softness: A Case Study of Lithium and Sodium Metal Clusters , 2004 .

[11]  I. K. Dmitrieva,et al.  Dipole Polarizability, Radius and Ionization Potential for Atomic Systems , 1983 .

[12]  Trygve Helgaker,et al.  Recent advances in wave function-based methods of molecular-property calculations. , 2012, Chemical reviews.

[13]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[14]  Resonating Valence Bond calculations on small anionic lithium clusters , 1999 .

[15]  K. Kowalski,et al.  Toward enabling large-scale open-shell equation-of-motion coupled cluster calculations: triplet states of β-carotene. , 2014, The journal of physical chemistry. A.

[16]  Jun Li,et al.  Au20: A Tetrahedral Cluster , 2003, Science.

[17]  M. Head‐Gordon,et al.  A fifth-order perturbation comparison of electron correlation theories , 1989 .

[18]  J. Sánchez-Marín,et al.  Full Configuration-Interaction Study on the Tetrahedral Li4 Cluster. , 2008, Journal of chemical theory and computation.

[19]  Henry Chermette,et al.  Density functional theory study of some structural and energetic properties of small lithium clusters , 1996 .

[20]  S. Shaik,et al.  Ferromagnetic bonding in high-spin alkali-metal clusters. How does sodium compare to lithium? , 2003 .

[21]  A. Becke A New Mixing of Hartree-Fock and Local Density-Functional Theories , 1993 .

[22]  Jun Li,et al.  Observation of an all-boron fullerene. , 2014, Nature chemistry.

[23]  J. Hammond,et al.  Linear response coupled cluster singles and doubles approach with modified spectral resolution of the similarity transformed Hamiltonian. , 2007, The Journal of chemical physics.

[24]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .

[25]  S. Gautam,et al.  Density functional studies of LiN and LiN+ (N = 2–30) clusters: Structure, binding and charge distribution , 2012 .

[26]  W. C. Swope,et al.  A computer simulation method for the calculation of equilibrium constants for the formation of physi , 1981 .

[27]  M. Parrinello,et al.  Canonical sampling through velocity rescaling. , 2007, The Journal of chemical physics.

[28]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[29]  T. H. Dunning Gaussian Basis Functions for Use in Molecular Calculations. III. Contraction of (10s6p) Atomic Basis Sets for the First‐Row Atoms , 1970 .

[30]  P. C. Hariharan,et al.  The influence of polarization functions on molecular orbital hydrogenation energies , 1973 .

[31]  Tjerk P. Straatsma,et al.  NWChem: A comprehensive and scalable open-source solution for large scale molecular simulations , 2010, Comput. Phys. Commun..

[32]  Pekka Pyykkö,et al.  Molecular single-bond covalent radii for elements 1-118. , 2009, Chemistry.

[33]  Lai‐Sheng Wang,et al.  Unique CO chemisorption properties of gold hexamer: Au6(CO)n- (n = 0-3). , 2005, Journal of the American Chemical Society.

[34]  René Fournier,et al.  Theoretical study of the structure of lithium clusters , 2003 .

[35]  R. Bartlett,et al.  A full coupled‐cluster singles and doubles model: The inclusion of disconnected triples , 1982 .

[36]  H. W. Sarkas,et al.  Lithium cluster anions: photoelectron spectroscopy and ab initio calculations. , 2011, The Journal of chemical physics.

[37]  L Jensen,et al.  Finite lifetime effects on the polarizability within time-dependent density-functional theory. , 2005, The Journal of chemical physics.

[38]  M. Keil,et al.  Vibrational structures in the A2E′′←X2E′ system of the lithium trimer: high-resolution spectroscopy and ab initio calculations , 1999 .

[39]  M. Wiechert,et al.  Ab initio Hartree-Fock molecular dynamics with parallel processing: application to small neutral and charged Lin clusters , 1996 .

[40]  Pedro J. Ballester,et al.  Ultrafast shape recognition for similarity search in molecular databases , 2007, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[41]  Blanc,et al.  Competition between planar and nonplanar structure in alkali hexamers: The example of Li6. , 1991, Physical review letters.

[42]  N. Handy,et al.  A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP) , 2004 .

[43]  S. Shaik,et al.  A Topological Study of the Ferromagnetic “No-Pair Bonding” in Maximum-Spin Lithium clusters: n+1Lin (n=2–6) , 2006 .

[44]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[45]  Swapan K. Ghosh,et al.  Ab initio studies on the polarizability of lithium clusters: Some unusual results , 2005 .

[46]  J. Hammond,et al.  Dynamic polarizabilities of polyaromatic hydrocarbons using coupled-cluster linear response theory. , 2007, The Journal of chemical physics.

[47]  J. Doye,et al.  Global Optimization by Basin-Hopping and the Lowest Energy Structures of Lennard-Jones Clusters Containing up to 110 Atoms , 1997, cond-mat/9803344.

[48]  J. Martins,et al.  Ab initio pseudopotential calculation of the photo-response of metal clusters , 1997 .

[49]  P. Dugourd,et al.  Measurement of static electric dipole polarizabilities of lithium clusters: Consistency with measured dynamic polarizabilities , 1999 .