Design of a power-reduction Viterbi decoder for WLAN applications

In this paper, a 64-state four-bit soft-decision Viterbi decoder with power saving mechanism for high speed wireless local area network applications is presented. Based on path merging and prediction techniques, a survivor memory unit with hierarchical memory design is proposed to reduce memory access operations. It is found that more than 70% memory access can be reduced by taking advantage of locality. Moreover, a low complexity compare-select-add unit is also presented, leading to save 15% area and 14.3% power dissipation as compared to conventional add-compare-select design. A test chip has been designed and implemented in 0.18-/spl mu/m standard CMOS process. The test results show that 30/spl sim/40% power dissipation can be reduced, and the power efficiency reaches 0.75 mW per Mb/s at 6 Mb/s and 1.26 mW per Mb/s at 54 Mb/s as specified in IEEE 802.11a.

[1]  Paul H. Siegel,et al.  Reduced-complexity Viterbi detector architectures for partial response signalling , 1995, Proceedings of GLOBECOM '95.

[2]  G. David Forney,et al.  Convolutional Codes II. Maximum-Likelihood Decoding , 1974, Inf. Control..

[3]  Chen-Yi Lee,et al.  A low power and high speed Viterbi decoder chip for WLAN applications , 2003, ESSCIRC 2004 - 29th European Solid-State Circuits Conference (IEEE Cat. No.03EX705).

[4]  Jan M. Rabaey,et al.  A 210 Mb/s radix-4 bit-level pipelined Viterbi decoder , 1995, Proceedings ISSCC '95 - International Solid-State Circuits Conference.

[5]  Kar-Ming Cheung,et al.  Quantization loss in convolutional decoding , 1993, IEEE Trans. Commun..

[6]  C. Rader Memory Management in a Viterbi Decoder , 1981, IEEE Trans. Commun..

[7]  L. R. Carley,et al.  A 110 MHz 350 mW 0.6 /spl mu/m CMOS 16-state generalized-target Viterbi detector for disk drive read channels , 1999 .

[8]  S. Sridharan,et al.  A 110 MHz 350 mW 0.6 /spl mu/ CMOS 16-state generalized-target Viterbi detector for disk drive read channels , 1999, Proceedings of the IEEE 1999 Custom Integrated Circuits Conference (Cat. No.99CH36327).

[9]  P. Glenn Gulak,et al.  Architectural tradeoffs for survivor sequence memory management in Viterbi decoders , 1993, IEEE Trans. Commun..

[10]  Andrew J. Viterbi,et al.  Error bounds for convolutional codes and an asymptotically optimum decoding algorithm , 1967, IEEE Trans. Inf. Theory.

[11]  Mircea R. Stan,et al.  Low power architecture of the soft-output Viterbi algorithm , 1998, Proceedings. 1998 International Symposium on Low Power Electronics and Design (IEEE Cat. No.98TH8379).

[12]  Inkyu Lee,et al.  A new architecture for the fast Viterbi algorithm , 2003, IEEE Trans. Commun..

[13]  P. M. Chau,et al.  Improved architectures for the add-compare-select operation in long constraint length Viterbi decoding , 1998 .

[14]  V.W.S. Chan,et al.  Principles of Digital Communication and Coding , 1979 .

[15]  Robert Cypher,et al.  Generalized trace-back techniques for survivor memory management in the Viterbi algorithm , 1993, J. VLSI Signal Process..

[16]  Chi-Ying Tsui,et al.  Low power ACS unit design for the Viterbi decoder [CDMA wireless systems] , 1999, ISCAS'99. Proceedings of the 1999 IEEE International Symposium on Circuits and Systems VLSI (Cat. No.99CH36349).

[17]  Thomas Noll,et al.  Implementation of scalable power and area efficient high-throughput Viterbi decoders , 2002 .

[18]  Teresa H. Meng,et al.  A 140-Mb/s, 32-state, radix-4 Viterbi decoder , 1992 .