One Note About the Tu-Deng Conjecture in Case $\mathop{\mathrm{w}}\nolimits(t)=5$

Let <inline-formula> <tex-math notation="LaTeX">$k \ge 2$ </tex-math></inline-formula> be an integer, and define <inline-formula> <tex-math notation="LaTeX">$S_{t}:=\{(a,b)\in \mathbb {Z}^{2} | 0 \le a,b \le 2^{k}-2, a+b=t (\text {mod} \,\,2^{k}-1), \mathop {\mathrm {w}}\nolimits (a)+ \mathop {\mathrm {w}}\nolimits (b)\le {k-1}\}$ </tex-math></inline-formula>, where <inline-formula> <tex-math notation="LaTeX">$t \in \mathbb {Z}, 1 \le t \le 2^{k}-2$ </tex-math></inline-formula>. This paper gives the upper bound of the cardinality of <inline-formula> <tex-math notation="LaTeX">$S_{t}$ </tex-math></inline-formula> in the case of <inline-formula> <tex-math notation="LaTeX">$\mathop {\mathrm {w}}\nolimits (t)=5$ </tex-math></inline-formula>. With this one, we conclude that a conjecture proposed by Tu and Deng in 2011 is right when <inline-formula> <tex-math notation="LaTeX">$\mathop {\mathrm {w}}\nolimits (t)=5$ </tex-math></inline-formula>.

[1]  Yingpu Deng,et al.  A conjecture about binary strings and its applications on constructing Boolean functions with optimal algebraic immunity , 2011, Des. Codes Cryptogr..

[2]  Subhamoy Maitra,et al.  Basic Theory in Construction of Boolean Functions with Maximum Possible Annihilator Immunity , 2006, Des. Codes Cryptogr..

[3]  Peizhong Lu,et al.  Two Classes of Symmetric Boolean Functions With Optimum Algebraic Immunity: Construction and Analysis , 2011, IEEE Transactions on Information Theory.

[4]  Claude Carlet,et al.  An Infinite Class of Balanced Functions with Optimal Algebraic Immunity, Good Immunity to Fast Algebraic Attacks and Good Nonlinearity , 2008, ASIACRYPT.

[5]  Shaofang Hong,et al.  A note on the Tu-Deng conjecture , 2015, J. Syst. Sci. Complex..

[6]  Willi Meier,et al.  Fast Algebraic Attacks on Stream Ciphers with Linear Feedback , 2003, CRYPTO.

[7]  Claude Carlet,et al.  Algebraic immunity for cryptographically significant Boolean functions: analysis and construction , 2006, IEEE Transactions on Information Theory.

[8]  Jean-Pierre Flori,et al.  On a generalised combinatorial conjecture involving addition mod 2k - 1 , 2011, Int. J. Inf. Coding Theory.

[9]  Lei Hu,et al.  Further properties of several classes of Boolean functions with optimum algebraic immunity , 2009, Des. Codes Cryptogr..

[10]  Yuan Li,et al.  On a Combinatorial Conjecture , 2009, IACR Cryptol. ePrint Arch..

[11]  Feng Liu,et al.  Constructing Symmetric Boolean Functions With Maximum Algebraic Immunity , 2009, IEEE Transactions on Information Theory.