Redox states and genesis of Cu- and Au-mineralized granite porphyries in the Jinshajiang Cu–Au metallogenic belt, SW China: studies on the zircon chemistry

[1]  Ting Liang,et al.  Geochemical and mineralogical contrasts between economic and uneconomic granite porphyries in the Beiya giant Au deposit, southwest China: Implications for petrogenesis and Cu–Au mineralization , 2022, Geological Journal.

[2]  R. Hu,et al.  Genesis of hydrous-oxidized parental magmas for porphyry Cu (Mo, Au) deposits in a postcollisional setting: examples from the Sanjiang region, SW China , 2022, Mineralium Deposita.

[3]  Z. Zajacz,et al.  The solubility of Cu, Ag and Au in magmatic sulfur-bearing fluids as a function of oxygen fugacity , 2022, Geochimica et Cosmochimica Acta.

[4]  Rui Wang,et al.  Amphibole fractionation and its potential redox effect on arc crust: Evidence from the Kohistan arc cumulates , 2021, American Mineralogist.

[5]  J. Huizenga,et al.  Petrology of the Machangqing Complex in Southeastern Tibet: Implications for the Genesis of Potassium-rich Adakite-like Intrusions in Collisional Zones , 2021, Journal of Petrology.

[6]  F. Ridolfi Amp-TB2: An Updated Model for Calcic Amphibole Thermobarometry , 2021, Minerals.

[7]  M. Fiorentini,et al.  New Magmatic Oxybarometer Using Trace Elements in Zircon , 2020 .

[8]  Bin Zhang,et al.  Late Eocene magmatism of the eastern Qiangtang block (eastern Tibetan Plateau) and its geodynamic implications , 2020 .

[9]  D. Groves,et al.  Geochemical discrimination between fertile and barren Eocene potassic porphyries in the Jinshajiang Cu–Au–Mo metallogenic belt, SW China: Implications for petrogenesis and metallogeny , 2020 .

[10]  R. Hu,et al.  Geochemistry, in-situ Sr-Nd-Hf-O isotopes, and mineralogical constraints on origin and magmatic-hydrothermal evolution of the Yulong porphyry Cu Mo deposit, Eastern Tibet , 2019 .

[11]  J. Richards,et al.  High water contents of magmas and extensive fluid exsolution during the formation of the Yulong porphyry Cu-Mo deposit, eastern Tibet , 2019, Journal of Asian Earth Sciences.

[12]  Wei Yang,et al.  Insight into zircon REE oxy-barometers: A lattice strain model perspective , 2019, Earth and Planetary Science Letters.

[13]  Rui Wang,et al.  Petrogenesis of Cenozoic high–Sr/Y shoshonites and associated mafic microgranular enclaves in an intracontinental setting: Implications for porphyry Cu-Au mineralization in western Yunnan, China , 2019, Lithos.

[14]  M. Fiorentini,et al.  Divergent T–ƒO2 paths during crystallisation of H2O-rich and H2O-poor magmas as recorded by Ce and U in zircon, with implications for TitaniQ and TitaniZ geothermometry , 2018, Contributions to Mineralogy and Petrology.

[15]  D. Perugini,et al.  AMFORM, a new mass-based model for the calculation of the unit formula of amphiboles from electron microprobe analyses , 2018, American Mineralogist.

[16]  W. Collins,et al.  Origin of postcollisional magmas and formation of porphyry Cu deposits in southern Tibet , 2018, Earth-Science Reviews.

[17]  Cin-Ty A. Lee,et al.  The redox “filter” beneath magmatic orogens and the formation of continental crust , 2018, Science Advances.

[18]  K. Hattori Porphyry Copper Potential in Japan Based on Magmatic Oxidation State , 2018 .

[19]  Huan Liu,et al.  Melt recharge, fO2-T conditions, and metal fertility of felsic magmas: zircon trace element chemistry of Cu-Au porphyries in the Sanjiang orogenic belt, southwest China , 2018, Mineralium Deposita.

[20]  Jian-wei Li,et al.  Geological and Chronological Constraints on the Long-Lived Eocene Yulong Porphyry Cu-Mo Deposit, Eastern Tibet: Implications for the Lifespan of Giant Porphyry Cu Deposits , 2017 .

[21]  Li‐Qiang Yang,et al.  Control of magmatic oxidation state in intracontinental porphyry mineralization: A case from Cu (Mo–Au) deposits in the Jinshajiang–Red River metallogenic belt, SW China , 2017 .

[22]  Yongjun Lu,et al.  Hydrothermal evolution and ore genesis of the Beiya giant Au polymetallic deposit, western Yunnan, China: Evidence from fluid inclusions and H–O–S–Pb isotopes , 2017 .

[23]  Xue Gao,et al.  Constraints of magmatic oxidation state on mineralization in the Beiya alkali-rich porphyry gold deposit, western Yunnan, China , 2017 .

[24]  J. Wilkinson,et al.  The effect of titanite crystallisation on Eu and Ce anomalies in zircon and its implications for the assessment of porphyry Cu deposit fertility , 2017 .

[25]  Wei-dong Sun,et al.  Oxygen fugacity and porphyry mineralization: A zircon perspective of Dexing porphyry Cu deposit, China , 2017 .

[26]  Huan Liu,et al.  Metallogenic setting and ore genetic model for the Beiya porphyry-skarn polymetallic Au orefield, western Yunnan, China , 2017 .

[27]  Xiaoli Shi,et al.  The assembly of Rodinia: The correlation of early Neoproterozoic (ca. 900 Ma) high-grade metamorphism and continental arc formation in the southern Beishan Orogen, southern Central Asian Orogenic Belt (CAOB) , 2017 .

[28]  Li‐Qiang Yang,et al.  Origin of the Eocene porphyries and mafic microgranular enclaves from the Beiya porphyry Au polymetallic deposit, western Yunnan, China: Implications for magma mixing/mingling and mineralization , 2016 .

[29]  J. Brenan,et al.  Magmatic oxygen fugacity estimated using zircon-melt partitioning of cerium , 2016 .

[30]  T. M. Harrison,et al.  Recovering the primary geochemistry of Jack Hills zircons through quantitative estimates of chemical alteration , 2016 .

[31]  Jingquan Zhu,et al.  Redox states and genesis of magmas associated with intra-continental porphyry Cu–Au mineralization within the Jinshajiang–Red River alkaline igneous belt, SW China , 2016 .

[32]  Hao-Long Zhou,et al.  Geochronology of the giant Beiya gold-polymetallic deposit in Yunnan Province, Southwest China and its relationship with the petrogenesis of alkaline porphyry , 2015 .

[33]  P. Shen,et al.  Oxidation Condition and Metal Fertility of Granitic Magmas: Zircon Trace-Element Data from Porphyry Cu Deposits in the Central Asian Orogenic Belt , 2015 .

[34]  Qingfei Wang,et al.  Geology and genesis of the giant Beiya porphyry–skarn gold deposit, northwestern Yangtze Block, China , 2015 .

[35]  J. Richards The oxidation state, and sulfur and Cu contents of arc magmas: implications for metallogeny , 2015 .

[36]  Kaihui Yang,et al.  THE GEOLOGY AND MINERALOGY OF THE BEIYA SKARN GOLD DEPOSIT IN YUNNAN, SOUTHWEST CHINA , 2015 .

[37]  Huan Liu,et al.  Geochemistry and geochronology of porphyries from the Beiya gold–polymetallic orefield, western Yunnan, China , 2015 .

[38]  Wei-dong Sun,et al.  Porphyry deposits and oxidized magmas , 2015 .

[39]  A. Kent,et al.  ZIRCON COMPOSITIONAL EVIDENCE FOR SULFUR-DEGASSING FROM ORE-FORMING ARC MAGMAS , 2015 .

[40]  S. Soloviev Geology, mineralization, and fluid inclusion characteristics of the Kumbel oxidized W–Cu–Mo skarn and Au–W stockwork deposit in Kyrgyzstan, Tien Shan , 2015, Mineralium Deposita.

[41]  J. Richards,et al.  Increasing Magmatic Oxidation State from Paleocene to Miocene in the Eastern Gangdese Belt, Tibet: Implication for Collision-Related Porphyry Cu-Mo +/- Au Mineralization , 2014 .

[42]  Zhaolin Wang,et al.  Geology and origin of the post-collisional Narigongma porphyry Cu-Mo deposit, southern Qinghai, Tibet , 2014 .

[43]  C. Chelle-Michou,et al.  Zircon petrochronology reveals the temporal link between porphyry systems and the magmatic evolution of their hidden plutonic roots (the Eocene Coroccohuayco deposit, Peru) , 2014 .

[44]  S. Barnes,et al.  Partition coefficients of chalcophile elements between sulfide and silicate melts and the early crystallization history of sulfide liquid : LA-ICP-MS analysis of MORB sulfide droplets , 2013 .

[45]  Peter A. Cawood,et al.  Intracontinental eocene-oligocene porphyry Cu mineral systems of Yunnan, Western Yangtze Craton, China: Compositional characteristics, sources, and implications for continental collision metallogeny , 2013 .

[46]  A. Audétat,et al.  Gold solubility and partitioning between sulfide liquid, monosulfide solid solution and hydrous mantle melts: Implications for the formation of Au-rich magmas and crust–mantle differentiation , 2013 .

[47]  Peter A. Cawood,et al.  Geochemical, Sr-Nd-Pb, and zircon Hf-O isotopic compositions of Eocene-Oligocene shoshonitic and potassic adakite-like felsic intrusions in Western Yunnan, SW China: Petrogenesis and tectonic implications , 2013 .

[48]  E. Watson,et al.  Ce and Eu anomalies in zircon as proxies for the oxidation state of magmas , 2012 .

[49]  R. Hu,et al.  Relationships between porphyry Cu–Mo mineralization in the Jinshajiang–Red River metallogenic belt and tectonic activity: Constraints from zircon U–Pb and molybdenite Re–Os geochronology , 2012 .

[50]  M. Wälle,et al.  Gold and copper in volatile saturated mafic to intermediate magmas: Solubilities, partitioning, and implications for ore deposit formation , 2012 .

[51]  B. McInnes,et al.  Petrogenesis and thermal history of the Yulong porphyry copper deposit, Eastern Tibet: insights from U-Pb and U-Th/He dating, and zircon Hf isotope and trace element analysis , 2012, Mineralogy and Petrology.

[52]  R. Dasgupta,et al.  Copper Systematics in Arc Magmas and Implications for Crust-Mantle Differentiation , 2012, Science.

[53]  P. Candela,et al.  Molybdenum, tungsten and manganese partitioning in the system pyrrhotite–Fe–S–O melt–rhyolite melt: Impact of sulfide segregation on arc magma evolution , 2011 .

[54]  Yigang Xu,et al.  Mineralogical and Geochemical Constraints on the Petrogenesis of Post-collisional Potassic and Ultrapotassic Rocks from Western Yunnan, SW China , 2010 .

[55]  Alberto Renzulli,et al.  Stability and chemical equilibrium of amphibole in calc-alkaline magmas: an overview, new thermobarometric formulations and application to subduction-related volcanoes , 2010 .

[56]  Jun Deng,et al.  Delineation and explanation of geochemical anomalies using fractal models in the Heqing area, Yunnan Province, China , 2010 .

[57]  Kaixing Wu,et al.  Crystallisation conditions (T, P, fO2) from mineral chemistry of Cu- and Au-mineralised alkaline intrusions in the Red River–Jinshajiang alkaline igneous belt, western Yunnan Province, China , 2009 .

[58]  E. Watson,et al.  New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers , 2007 .

[59]  M. Thirlwall,et al.  Adakites without slab melting: High pressure differentiation of island arc magma, Mindanao, the Philippines , 2006 .

[60]  A. Du,et al.  Himalayan Cu–Mo–Au mineralization in the eastern Indo–Asian collision zone: constraints from Re–Os dating of molybdenite , 2006 .

[61]  J. B. Thomas,et al.  Crystallization thermometers for zircon and rutile , 2006 .

[62]  Cong-Qiang Liu,et al.  Zircon Ce4+/Ce3+ ratios and ages for Yulong ore-bearing porphyries in eastern Tibet , 2006 .

[63]  B. Dai,et al.  Low-degree melting of a metasomatized lithospheric mantle for the origin of Cenozoic Yulong monzogranite-porphyry, east Tibet: Geochemical and Sr Nd Pb Hf isotopic constraints , 2006 .

[64]  M. Basei,et al.  4.4 billion years of crustal maturation: oxygen isotope ratios of magmatic zircon , 2005 .

[65]  W. Qu,et al.  Mineralization episode of porphyry copper deposits in the Jinshajiang-Red River mineralization belt: Re-Os dating , 2005 .

[66]  J. Hertogen,et al.  Potassic Magmatism in Western Sichuan and Yunnan Provinces, SE Tibet, China: Petrological and Geochemical Constraints on Petrogenesis , 2005 .

[67]  D. Rubie,et al.  The Constancy of Upper Mantle fO2 Through Time Inferred from V/Sc Ratios in Basalts: Implications for the Rise in Atmospheric O2 , 2004 .

[68]  R. Binns,et al.  Release of gold-bearing fluids in convergent margin magmas prompted by magnetite crystallization , 2004, Nature.

[69]  P. Burnard,et al.  Helium and argon isotope geochemistry of alkaline intrusion-associated gold and copper deposits along the Red River–Jinshajiang fault belt, SW China , 2004 .

[70]  U. Schaltegger,et al.  The Composition of Zircon and Igneous and Metamorphic Petrogenesis , 2003 .

[71]  R. Hu,et al.  The alkaline porphyry associated Yao’an gold deposit, Yunnan, China: rare earth element and stable isotope evidence for magmatic-hydrothermal ore formation , 2001 .

[72]  An Yin,et al.  Geologic Evolution of the Himalayan-Tibetan Orogen , 2000 .

[73]  U. Schärer,et al.  Age and origin of magmatism along the Cenozoic Red River shear belt, China , 1999 .

[74]  R. Sillitoe,et al.  Characteristics and controls of the largest porphyry copper‐gold and epithermal gold deposits in the circum‐Pacific region , 1997 .

[75]  U. Schärer,et al.  The Ailao Shan/Red River metamorphic belt: Tertiary left-lateral shear between Indochina and South China , 1990, Nature.

[76]  Motoaki Sato,et al.  Intrinsic oxygen fugacity measurements on seven chondrites, a pallasite, and a tektite and the redox state of meteorite parent bodies , 1984 .

[77]  A. Buddington,et al.  Iron-Titanium Oxide Minerals and Synthetic Equivalents , 1964 .