A solid future for battery development
暂无分享,去创建一个
[1] Miaofang Chi,et al. Solid Electrolyte: the Key for High‐Voltage Lithium Batteries , 2015 .
[2] G. Jellison,et al. A Stable Thin‐Film Lithium Electrolyte: Lithium Phosphorus Oxynitride , 1997 .
[3] A. Hayashi,et al. Structural change of Li2S-P2S5 sulfide solid electrolytes in the atmosphere , 2011 .
[4] Gerbrand Ceder,et al. Interface Stability in Solid-State Batteries , 2016 .
[5] Ryoji Kanno,et al. Lithium Ionic Conductor Thio-LISICON: The Li2 S GeS2 P 2 S 5 System , 2001 .
[6] Antonio Fábio,et al. Polymer , 2018, Definitions.
[7] Steve Greenbaum,et al. NMR, DSC and high pressure electrical conductivity studies of liquid and hybrid electrolytes , 1999 .
[8] A. Robinson,et al. Solid-state batteries enter EV fray , 2014 .
[9] Karsten Reuter,et al. Interfacial challenges in solid-state Li ion batteries. , 2015, The journal of physical chemistry letters.
[10] Satoshi Hori,et al. High-power all-solid-state batteries using sulfide superionic conductors , 2016, Nature Energy.
[11] C. Stoldt,et al. Lithium-Ion Trapping from Local Structural Distortions in Sodium Super Ionic Conductor (NASICON) Electrolytes , 2014 .
[12] Kota Suzuki,et al. Bulk-Type All Solid-State Batteries with 5 V Class LiNi0.5Mn1.5O4 Cathode and Li10GeP2S12 Solid Electrolyte , 2016 .
[13] M. Broussely,et al. Li-ion batteries and portable power source prospects for the next 5–10 years , 2004 .
[14] Tsutomu Minami,et al. Recent progress of glass and glass-ceramics as solid electrolytes for lithium secondary batteries , 2006 .
[15] Wolfgang G. Zeier,et al. Direct Observation of the Interfacial Instability of the Fast Ionic Conductor Li10GeP2S12 at the Lithium Metal Anode , 2016 .
[16] John B Goodenough,et al. The Li-ion rechargeable battery: a perspective. , 2013, Journal of the American Chemical Society.
[17] Reiner Korthauer,et al. Handbuch Lithium-Ionen-Batterien , 2013 .
[18] P. Bruce,et al. Ionic conductivity of LISICON solid solutions, Li2+2xZn1−xGeO4 , 1982 .
[19] Andrea Schreiber,et al. Life Cycle Assessment and resource analysis of all-solid-state batteries , 2016 .
[20] Sebastian Wenzel,et al. Interphase formation and degradation of charge transfer kinetics between a lithium metal anode and highly crystalline Li7P3S11 solid electrolyte , 2016 .
[21] Yizhou Zhu,et al. First principles study on electrochemical and chemical stability of solid electrolyte–electrode interfaces in all-solid-state Li-ion batteries , 2016 .
[22] Alexander Kuhn,et al. Structure and dynamics of the fast lithium ion conductor "Li7La3Zr2O12". , 2011, Physical chemistry chemical physics : PCCP.
[23] Yuki Kato,et al. A lithium superionic conductor. , 2011, Nature materials.
[24] Yizhou Zhu,et al. Origin of Outstanding Stability in the Lithium Solid Electrolyte Materials: Insights from Thermodynamic Analyses Based on First-Principles Calculations. , 2015, ACS applied materials & interfaces.
[25] Kazunori Takada,et al. A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries , 2014 .
[26] M. Doeff,et al. Slow recrystallization in the polymer electrolyte system poly(ethylene oxide)n-LiN(CF3SO2)2 , 2000 .
[27] R. Huggins. Solid State Ionics , 1989 .
[28] A. Hayashi,et al. Evaluation of elastic modulus of Li2S–P2S5 glassy solid electrolyte by ultrasonic sound velocity measurement and compression test , 2013 .
[29] K. S. Nahm,et al. Review on composite polymer electrolytes for lithium batteries , 2006 .