A solid future for battery development

Solid-state batteries have recently attracted great interest as potentially safe and stable high-energy storage systems. However, key issues remain unsolved, hindering full-scale commercialization.

[1]  Miaofang Chi,et al.  Solid Electrolyte: the Key for High‐Voltage Lithium Batteries , 2015 .

[2]  G. Jellison,et al.  A Stable Thin‐Film Lithium Electrolyte: Lithium Phosphorus Oxynitride , 1997 .

[3]  A. Hayashi,et al.  Structural change of Li2S-P2S5 sulfide solid electrolytes in the atmosphere , 2011 .

[4]  Gerbrand Ceder,et al.  Interface Stability in Solid-State Batteries , 2016 .

[5]  Ryoji Kanno,et al.  Lithium Ionic Conductor Thio-LISICON: The Li2 S ­ GeS2 ­ P 2 S 5 System , 2001 .

[6]  Antonio Fábio,et al.  Polymer , 2018, Definitions.

[7]  Steve Greenbaum,et al.  NMR, DSC and high pressure electrical conductivity studies of liquid and hybrid electrolytes , 1999 .

[8]  A. Robinson,et al.  Solid-state batteries enter EV fray , 2014 .

[9]  Karsten Reuter,et al.  Interfacial challenges in solid-state Li ion batteries. , 2015, The journal of physical chemistry letters.

[10]  Satoshi Hori,et al.  High-power all-solid-state batteries using sulfide superionic conductors , 2016, Nature Energy.

[11]  C. Stoldt,et al.  Lithium-Ion Trapping from Local Structural Distortions in Sodium Super Ionic Conductor (NASICON) Electrolytes , 2014 .

[12]  Kota Suzuki,et al.  Bulk-Type All Solid-State Batteries with 5 V Class LiNi0.5Mn1.5O4 Cathode and Li10GeP2S12 Solid Electrolyte , 2016 .

[13]  M. Broussely,et al.  Li-ion batteries and portable power source prospects for the next 5–10 years , 2004 .

[14]  Tsutomu Minami,et al.  Recent progress of glass and glass-ceramics as solid electrolytes for lithium secondary batteries , 2006 .

[15]  Wolfgang G. Zeier,et al.  Direct Observation of the Interfacial Instability of the Fast Ionic Conductor Li10GeP2S12 at the Lithium Metal Anode , 2016 .

[16]  John B Goodenough,et al.  The Li-ion rechargeable battery: a perspective. , 2013, Journal of the American Chemical Society.

[17]  Reiner Korthauer,et al.  Handbuch Lithium-Ionen-Batterien , 2013 .

[18]  P. Bruce,et al.  Ionic conductivity of LISICON solid solutions, Li2+2xZn1−xGeO4 , 1982 .

[19]  Andrea Schreiber,et al.  Life Cycle Assessment and resource analysis of all-solid-state batteries , 2016 .

[20]  Sebastian Wenzel,et al.  Interphase formation and degradation of charge transfer kinetics between a lithium metal anode and highly crystalline Li7P3S11 solid electrolyte , 2016 .

[21]  Yizhou Zhu,et al.  First principles study on electrochemical and chemical stability of solid electrolyte–electrode interfaces in all-solid-state Li-ion batteries , 2016 .

[22]  Alexander Kuhn,et al.  Structure and dynamics of the fast lithium ion conductor "Li7La3Zr2O12". , 2011, Physical chemistry chemical physics : PCCP.

[23]  Yuki Kato,et al.  A lithium superionic conductor. , 2011, Nature materials.

[24]  Yizhou Zhu,et al.  Origin of Outstanding Stability in the Lithium Solid Electrolyte Materials: Insights from Thermodynamic Analyses Based on First-Principles Calculations. , 2015, ACS applied materials & interfaces.

[25]  Kazunori Takada,et al.  A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries , 2014 .

[26]  M. Doeff,et al.  Slow recrystallization in the polymer electrolyte system poly(ethylene oxide)n-LiN(CF3SO2)2 , 2000 .

[27]  R. Huggins Solid State Ionics , 1989 .

[28]  A. Hayashi,et al.  Evaluation of elastic modulus of Li2S–P2S5 glassy solid electrolyte by ultrasonic sound velocity measurement and compression test , 2013 .

[29]  K. S. Nahm,et al.  Review on composite polymer electrolytes for lithium batteries , 2006 .