34.3: Dual π‐cell Fast Response LC Display

In this paper, we propose a fast response time liquid crystal display (LCD) for 3D applications. The fast response LCD consists of dual π-cells, that are operated at voltages slightly higher (≥10V) than current AMLCDs. The gray-scale device builds on the dual cell shutter design of Haven22 where the optical transitions are fast as a result of always increasing the voltage on a liquid crystal cell. This is possible because the relaxation of the cell is optically hidden. We demonstrate a device design, based on this concept, with sub-millisecond switching between any gray level states.

[1]  Sung-Min Jung,et al.  14.4: Polarizer Glasses Type 3‐D TVs having High Image Quality with Active Retarder 3‐D Technology , 2011 .

[2]  Philip J. Bos,et al.  Optical Performance of the π Cell Compensated with a Negative-Birefringence Film and an A-plate , 1999 .

[3]  Hong Hua,et al.  48.1: Distinguished Student Paper: A Depth‐Fused Multi‐Focal‐Plane Display Prototype Enabling Focus Cues in Stereoscopic Displays , 2011 .

[4]  Hajime Nakamura,et al.  52.2: Invited Paper: Color Sequential LCD Based on OCB with an LED Backlight , 2000 .

[5]  James Gao,et al.  High-speed switchable lens enables the development of a volumetric stereoscopic display. , 2009, Optics express.

[6]  Bin Wang,et al.  Finite-difference time-domain simulation of a liquid-crystal optical phased array. , 2005, Journal of the Optical Society of America. A, Optics, image science, and vision.

[7]  Kazushige Ohtawara,et al.  58.5L: Late‐News Paper: Full HD 3D Display using Stripe‐patterned Quarter‐wave Retarder Array and Retardation‐switching Glasses , 2010 .

[8]  Shin-Tson Wu,et al.  Modeling of Blue Phase Liquid Crystal Displays , 2009, Journal of Display Technology.

[9]  Jenn-Jia Su,et al.  Fast-response study of polymer-stabilized VA-LCD , 2010 .

[10]  Jung-Hoon Yoon,et al.  34.2: Field Sequential LC Barrier for a Full Resolution Auto‐stereoscopic 3D Display , 2011 .

[11]  Jesper Osterman,et al.  8.4: Contrast‐Enhanced High‐Speed Polarization Modulator for Active‐Retarder 3D Displays , 2011 .

[12]  Shin-Tson Wu,et al.  Submillisecond Gray-Level Response Time of a Polymer-Stabilized Blue-Phase Liquid Crystal , 2010, Journal of Display Technology.

[13]  Gordon D. Love,et al.  44.4: Invited Paper: A Novel Stereo Display that Presents Nearly Correct Focus Cues , 2010 .

[14]  Hoi Sing Kwok,et al.  P‐137: Photoaligned Transflective Liquid Crystal Display with Single Cell Gap using OCB and Low Twist Nematic Modes , 2007 .

[15]  P. Bos,et al.  The pi-Cell: A Fast Liquid-Crystal Optical-Switching Device , 1984 .

[16]  Shin-Tson Wu,et al.  Low voltage blue-phase liquid crystal displays , 2009 .

[17]  Thomas J. Haven A Liquid-Crystal Video Stereoscope With High Extinction Ratios, A 28 % Transmission State, And One-Hundred-Microsecond Switching , 1987, Photonics West - Lasers and Applications in Science and Engineering.

[18]  Yi-Pai Huang,et al.  58.2: Spatial‐Temporal Hybrid Multi‐View 3D Display , 2010 .

[19]  Chun-Ho Chen,et al.  A Field Sequential Color LCD Based on Color Fields Arrangement for Color Breakup and Flicker Reduction , 2007, Journal of Display Technology.

[20]  Shin-ichi Yamamoto,et al.  39.1: Invited Paper: Optically Isotropic Nano‐Structured Liquid Crystal Composites for Display Applications , 2009 .