How many metazoan species live in the world’s largest mineral exploration region?

[1]  M. Rabone,et al.  A review of the International Seabed Authority database DeepData from a biological perspective: challenges and opportunities in the UN Ocean Decade , 2023, Database J. Biol. Databases Curation.

[2]  E. Simon-Lledó,et al.  Rock outcrops enhance abyssal benthic biodiversity , 2023, Deep Sea Research Part I: Oceanographic Research Papers.

[3]  P. Domenici,et al.  How much biodiversity is concealed in the word ‘biodiversity’? , 2023, Current Biology.

[4]  M. Rabone,et al.  Abyssal fauna of polymetallic nodule exploration areas, eastern Clarion-Clipperton Zone, central Pacific Ocean: Amphinomidae and Euphrosinidae (Annelida, Amphinomida) , 2022, ZooKeys.

[5]  Magdalini Christodoulou,et al.  Taxonomic assessment of deep-sea decapod crustaceans collected from polymetallic nodule fields of the East Pacific Ocean using an integrative approach , 2022, Marine Biodiversity.

[6]  M. Rabone,et al.  Abyssal fauna of polymetallic nodule exploration areas, eastern Clarion-Clipperton Zone, central Pacific Ocean: Annelida: Spionidae and Poecilochaetidae , 2022, Marine Biodiversity.

[7]  Jennifer M. Durden,et al.  Benthic megafauna of the western Clarion-Clipperton Zone, Pacific Ocean , 2022, ZooKeys.

[8]  A. Metaxas,et al.  Assessment of scientific gaps related to the effective environmental management of deep-seabed mining , 2022, Marine Policy.

[9]  M. Clark,et al.  Editorial: Biodiversity, Connectivity and Ecosystem Function Across the Clarion-Clipperton Zone: A Regional Synthesis for an Area Targeted for Nodule Mining , 2021, Frontiers in Marine Science.

[10]  A. Vanreusel,et al.  Potential impacts of polymetallic nodule removal on deep-sea meiofauna , 2021, Scientific Reports.

[11]  Jennifer M. Durden,et al.  Environment, ecology, and potential effectiveness of an area protected from deep-sea mining (Clarion Clipperton Zone, abyssal Pacific) , 2021 .

[12]  Astrid B. Leitner,et al.  Regional Variation in Communities of Demersal Fishes and Scavengers Across the CCZ and Pacific Ocean , 2021, Frontiers in Marine Science.

[13]  L. Menot,et al.  Diversity of Deep-Sea Scale-Worms (Annelida, Polynoidae) in the Clarion-Clipperton Fracture Zone , 2021, Frontiers in Marine Science.

[14]  Astrid B. Leitner,et al.  Testing the Seamount Refuge Hypothesis for Predators and Scavengers in the Western Clarion-Clipperton Zone , 2021, Frontiers in Marine Science.

[15]  Astrid B. Leitner,et al.  Biogeography and Connectivity Across Habitat Types and Geographical Scales in Pacific Abyssal Scavenging Amphipods , 2021, Frontiers in Marine Science.

[16]  A. Vanreusel,et al.  Toward a reliable assessment of potential ecological impacts of deep‐sea polymetallic nodule mining on abyssal infauna , 2021, Limnology and Oceanography: Methods.

[17]  Jennifer M. Durden,et al.  Megafaunal Ecology of the Western Clarion Clipperton Zone , 2021, Frontiers in Marine Science.

[18]  L. Levin,et al.  Eukaryotic Biodiversity and Spatial Patterns in the Clarion-Clipperton Zone and Other Abyssal Regions: Insights From Sediment DNA and RNA Metabarcoding , 2021, Frontiers in Marine Science.

[19]  L. Levin,et al.  Scientific and budgetary trade‐offs between morphological and molecular methods for deep‐sea biodiversity assessment , 2021, Integrated environmental assessment and management.

[20]  T. Horton,et al.  Investigation of the Amathillopsidae (Amphipoda, Crustacea), including the description of a new species, reveals a clinging lifestyle in the deep sea worldwide , 2021, ZooKeys.

[21]  Jennifer M. Durden,et al.  Recommendations for the Standardisation of Open Taxonomic Nomenclature for Image-Based Identifications , 2021, Frontiers in Marine Science.

[22]  S. Brix,et al.  Species boundaries and phylogeographic patterns in new species of Nannoniscus (Janiroidea: Nannoniscidae) from the equatorial Pacific nodule province inferred from mtDNA and morphology , 2021 .

[23]  A. Vanreusel,et al.  Description and distribution of Erebussau nom. nov. pro Erebus Bussau, 1993 nec Erebus Latreille, 1810 with description of a new specie, and of Odetenema gesarae gen. nov., sp. nov. (Nematoda: Desmoscolecida) from nodule-bearing abyssal sediments in the Pacific. , 2021, Zootaxa.

[24]  M. Rabone,et al.  Neanthes goodayi sp. nov. (Annelida, Nereididae), a remarkable new annelid species living inside deep-sea polymetallic nodules , 2021 .

[25]  OUP accepted manuscript , 2021, Zoological Journal of the Linnean Society.

[26]  C. Murakami,et al.  A new genus and species of Nanaloricidae (Loricifera: Nanaloricida) from the Clarion-Clipperton Fracture Zone , 2020 .

[27]  Astrid B. Leitner,et al.  Multi-scale variations in invertebrate and fish megafauna in the mid-eastern Clarion Clipperton Zone , 2020, Progress in Oceanography.

[28]  C. Devey,et al.  Discovery of widely available abyssal rock patches reveals overlooked habitat type and prompts rethinking deep-sea biodiversity , 2020, Proceedings of the National Academy of Sciences.

[29]  A. Vanreusel,et al.  Phylogenetic clustering and rarity imply risk of local species extinction in prospective deep-sea mining areas of the Clarion–Clipperton Fracture Zone , 2020, Proceedings of the Royal Society B.

[30]  Yadong Zhou,et al.  Moebjergarctus clarionclippertonensis, a new abyssal tardigrade (Arthrotardigrada, Halechiniscidae, Euclavarctinae) from the Clarion-Clipperton Fracture Zone, North-East Pacific. , 2020, Zootaxa.

[31]  T. Riehl,et al.  Macrostylis metallicola spec. nov.—an isopod with geographically clustered genetic variability from a polymetallic-nodule area in the Clarion-Clipperton Fracture Zone , 2020, PeerJ.

[32]  K. Meißner,et al.  High diversity and pan-oceanic distribution of deep-sea polychaetes: Prionospio and Aurospio (Annelida: Spionidae) in the Atlantic and Pacific Ocean , 2020, Organisms Diversity & Evolution.

[33]  G. Rouse,et al.  A group of species “Psychropotes longicauda” (Psychropotidae, Elasipodida, Holothuroidea) from the Kuril-Kamchatka Trench area (North-West Pacific) , 2020 .

[34]  C. Rodrigues,et al.  Unexpected high abyssal ophiuroid diversity in polymetallic nodule fields of the northeast Pacific Ocean and implications for conservation , 2019, Biogeosciences.

[35]  A. Glover,et al.  Abyssal fauna of polymetallic nodule exploration areas, eastern Clarion-Clipperton Zone, central Pacific Ocean: Annelida: Capitellidae, Opheliidae, Scalibregmatidae, and Travisiidae , 2019, ZooKeys.

[36]  T. O’hara,et al.  Dark Ophiuroid Biodiversity in a Prospective Abyssal Mine Field , 2019, Current Biology.

[37]  H. Ruhl,et al.  Detecting the Effects of Deep-Seabed Nodule Mining: Simulations Using Megafaunal Data From the Clarion-Clipperton Zone , 2019, Front. Mar. Sci..

[38]  S. Schnurr,et al.  Adult life strategy affects distribution patterns in abyssal isopods – implications for conservation in Pacific nodule areas , 2019, Biogeosciences.

[39]  A. Vanreusel,et al.  Distribution of free-living marine nematodes in the Clarion–Clipperton Zone: implications for future deep-sea mining scenarios , 2019, Biogeosciences.

[40]  H. Harden‐Davies,et al.  Access to Marine Genetic Resources (MGR): Raising Awareness of Best-Practice Through a New Agreement for Biodiversity Beyond National Jurisdiction (BBNJ) , 2019, Front. Mar. Sci..

[41]  L. Menot,et al.  High species richness and unique composition of the tanaidacean communities associated with five areas in the Pacific polymetallic nodule fields , 2019, Progress in Oceanography.

[42]  P. Martínez Arbizu,et al.  Deep-sea Kinorhyncha diversity of the polymetallic nodule fields at the Clarion-Clipperton Fracture Zone (CCZ) , 2019, Zoologischer Anzeiger.

[43]  A. Colaço,et al.  Are seamounts refuge areas for fauna from polymetallic nodule fields? , 2019, Biogeosciences.

[44]  L. Menot,et al.  Alpha and beta diversity patterns of polychaete assemblages across the nodule province of the eastern Clarion-Clipperton Fracture Zone (equatorial Pacific) , 2019, Biogeosciences.

[45]  R. Kristensen,et al.  Loricifera inhabiting spherical agglutinated structures in the abyssal eastern equatorial Pacific nodule fields , 2019, Marine Biodiversity.

[46]  Timm Schoening,et al.  Ecology of a polymetallic nodule occurrence gradient: Implications for deep‐sea mining , 2019, Limnology and oceanography.

[47]  P. Martínez Arbizu,et al.  Convergent evolution of mouthparts morphology between Siphonostomatoida and a new genus of deep-sea Aegisthidae Giesbrecht, 1893 (Copepoda: Harpacticoida) , 2019, Marine Biodiversity.

[48]  Jennifer M. Durden,et al.  Megafaunal variation in the abyssal landscape of the Clarion Clipperton Zone , 2019, Progress in oceanography.

[49]  Y. Hisaki Deep Sea Research Part I: Oceanographic Research Papers , 2019 .

[50]  L. Menot,et al.  New genera and species from the Equatorial Pacific provide phylogenetic insights into deep-sea Polynoidae (Annelida) , 2018, Zoological Journal of the Linnean Society.

[51]  D. Gordon,et al.  Bryozoa (Cyclostomata and Ctenostomata) from polymetallic nodules in the Russian exploration area, Clarion-Clipperton Fracture Zone, eastern Pacific Ocean-taxon novelty and implications of mining. , 2018, Zootaxa.

[52]  D. Amon,et al.  Two new species of Sympagella (Porifera: Hexactinellida: Rossellidae) collected from the Clarion-Clipperton Zone, East Pacific. , 2018, Zootaxa.

[53]  Kendall R. Jones,et al.  The Location and Protection Status of Earth’s Diminishing Marine Wilderness , 2018, Current Biology.

[54]  A. Driskell,et al.  Molecular species delimitation and its implications for species descriptions using desmosomatid and nannoniscid isopods from the VEMA fracture zone as example taxa , 2018 .

[55]  Yuan Zhang,et al.  New Hexactinellid Sponge Chaunoplectella megapora sp. nov. (Lyssacinosida: Leucopsacidae) from Clarion-Clipperton Fracture Zone, Eastern Pacific Ocean. , 2018, Zootaxa.

[56]  P. M. Arbizu,et al.  Deep-sea glass sponges (Hexactinellida) from polymetallic nodule fields in the Clarion-Clipperton Fracture Zone (CCFZ), northeastern Pacific: Part II—Hexasterophora , 2018, Marine Biodiversity.

[57]  M. Rabone,et al.  Abyssal fauna of the UK-1 polymetallic nodule exploration area, Clarion-Clipperton Zone, central Pacific Ocean: Mollusca , 2017, ZooKeys.

[58]  Jennifer M. Durden,et al.  A procedural framework for robust environmental management of deep-sea mining projects using a conceptual model , 2017 .

[59]  Jeffrey C Drazen,et al.  Megafauna of the UKSRL exploration contract area and eastern Clarion-Clipperton Zone in the Pacific Ocean: Annelida, Arthropoda, Bryozoa, Chordata, Ctenophora, Mollusca , 2017, Biodiversity data journal.

[60]  P. Martínez Arbizu,et al.  Deep-sea glass sponges (Hexactinellida) from polymetallic nodule fields in the Clarion-Clipperton Fracture Zone (CCFZ), northeastern Pacific: Part I – Amphidiscophora , 2017, Marine Biodiversity.

[61]  Rich Mooi,et al.  Megafauna of the UKSRL exploration contract area and eastern Clarion-Clipperton Zone in the Pacific Ocean: Echinodermata , 2017, Biodiversity data journal.

[62]  S. Brix,et al.  Integrative species delimitation in the deep-sea genus Thaumastosoma Hessler, 1970 (Isopoda, Asellota, Nannoniscidae) reveals a new genus and species from the Atlantic and central Pacific abyss , 2017 .

[63]  Alexander Lex,et al.  UpSetR: an R package for the visualization of intersecting sets and their properties , 2017, bioRxiv.

[64]  T. Molodtsova,et al.  Black corals (Anthozoa: Antipatharia) of the Clarion-Clipperton Fracture Zone , 2017, Marine Biodiversity.

[65]  Jens Greinert,et al.  Biological responses to disturbance from simulated deep-sea polymetallic nodule mining , 2017, PloS one.

[66]  G. Wilson Macrofauna abundance, species diversity and turnover at three sites in the Clipperton-Clarion Fracture Zone , 2017, Marine Biodiversity.

[67]  Cindy Lee Van Dover,et al.  Defining “serious harm” to the marine environment in the context of deep-seabed mining , 2016 .

[68]  A. Chao,et al.  iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers) , 2016 .

[69]  H. Ruhl,et al.  DNA barcoding uncovers cryptic diversity in 50% of deep-sea Antarctic polychaetes , 2016, Royal Society Open Science.

[70]  M. Sigovini,et al.  Open Nomenclature in the biodiversity era , 2016 .

[71]  Adrian G. Glover,et al.  Insights into the abundance and diversity of abyssal megafauna in a polymetallic-nodule region in the eastern Clarion-Clipperton Zone , 2016, Scientific Reports.

[72]  G. Carvalho,et al.  Worldwide Analysis of Sedimentary DNA Reveals Major Gaps in Taxonomic Knowledge of Deep-Sea Benthos , 2016, Front. Mar. Sci..

[73]  Anne Chao,et al.  Nonparametric Estimation and Comparison of Species Richness , 2016 .

[74]  Erik Schultes,et al.  The FAIR Guiding Principles for scientific data management and stewardship , 2016, Scientific Data.

[75]  M. Miljutina,et al.  Intraspecific variability of morphological characters in the species-rich deep-sea genus Acantholaimus Allgén, 1933 (Nematoda: Chromadoridae) , 2016 .

[76]  S. Cairns New abyssal Primnoidae (Anthozoa: Octocorallia) from the Clarion-Clipperton Fracture Zone, equatorial northeastern Pacific , 2016, Marine Biodiversity.

[77]  C. Smith,et al.  An End-to-End DNA Taxonomy Methodology for Benthic Biodiversity Survey in the Clarion-Clipperton Zone, Central Pacific Abyss , 2015 .

[78]  E. Pebesma,et al.  Classes and Methods for Spatial Data , 2015 .

[79]  Jennifer M. Durden,et al.  Abyssal hills - hidden source of increased habitat heterogeneity, benthic megafaunal biomass and diversity in the deep sea , 2015 .

[80]  A. Márcia Barbosa,et al.  fuzzySim: applying fuzzy logic to binary similarity indices in ecology , 2015 .

[81]  T. J. Webb,et al.  Global Patterns of Extinction Risk in Marine and Non-marine Systems , 2015, Current Biology.

[82]  Kerrie Mengersen,et al.  Species Richness on Coral Reefs and the Pursuit of Convergent Global Estimates , 2015, Current Biology.

[83]  L. Menot,et al.  A Reverse Taxonomic Approach to Assess Macrofaunal Distribution Patterns in Abyssal Pacific Polymetallic Nodule Fields , 2015, PloS one.

[84]  Nicholas D. Higgs,et al.  Biases in biodiversity: wide-ranging species are discovered first in the deep sea , 2015, Front. Mar. Sci..

[85]  Skipton N. C. Woolley,et al.  Invertebrate diversity of the unexplored marine western margin of Australia: taxonomy and implications for global biodiversity , 2015, Marine Biodiversity.

[86]  J. Gutt,et al.  Challenges of deep-sea biodiversity assessments in the Southern Ocean. , 2014 .

[87]  Kerrie Mengersen,et al.  Global species richness estimates have not converged. , 2014, Trends in ecology & evolution.

[88]  Elizabeth L. Sander,et al.  Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies , 2014 .

[89]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[90]  S D Gaines,et al.  From principles to practice: a spatial approach to systematic conservation planning in the deep sea , 2013, Proceedings of the Royal Society B: Biological Sciences.

[91]  O. N. Zezina,et al.  New paedomorphic brachiopods from the abyssal zone of the north-eastern Pacific Ocean. , 2013, Zootaxa.

[92]  Bert W. Hoeksema,et al.  Global Coordination and Standardisation in Marine Biodiversity through the World Register of Marine Species (WoRMS) and Related Databases , 2013, PloS one.

[93]  Simon P. Wilson,et al.  The Magnitude of Global Marine Species Diversity , 2012, Current Biology.

[94]  A. Chao,et al.  Coverage-based rarefaction and extrapolation: standardizing samples by completeness rather than size. , 2012, Ecology.

[95]  Simon P. Wilson,et al.  Predicting total global species richness using rates of species description and estimates of taxonomic effort. , 2012, Systematic biology.

[96]  Robert K. Colwell,et al.  Models and estimators linking individual-based and sample-based rarefaction, extrapolation and comparison of assemblages , 2012 .

[97]  R. Bamber,et al.  Are there widespread peracarid species in the deep sea (Crustacea: Malacostraca)? , 2012 .

[98]  C. Mora,et al.  How Many Species Are There on Earth and in the Ocean? , 2011, PLoS biology.

[99]  M. Malyutina Description of two new species of munnopsid isopods (Crustacea: Isopoda: Asellota) from manganese nodules area of the Clarion-Clipperton Fracture Zone, Pacific Ocean , 2011 .

[100]  Holly M. Bik,et al.  Low endemism, continued deep-shallow interchanges, and evidence for cosmopolitan distributions in free-living marine nematodes (order Enoplida) , 2010, BMC Evolutionary Biology.

[101]  Campbell O. Webb,et al.  Picante: R tools for integrating phylogenies and ecology , 2010, Bioinform..

[102]  Jonathan A Coddington,et al.  Undersampling bias: the null hypothesis for singleton species in tropical arthropod surveys. , 2009, The Journal of animal ecology.

[103]  H. Ruhl Community change in the variable resource habitat of the abyssal northeast Pacific. , 2008, Ecology.

[104]  A. Rogers,et al.  Biodiversity, species ranges, and gene flow in the abyssal Pacific nodule province: predicting and managing the impacts of deep seabed mining , 2008 .

[105]  J. Sarrazin,et al.  Ferromanganese nodule fauna in the Tropical North Pacific Ocean: Species richness, faunal cover and spatial distribution , 2007 .

[106]  S. Ernest,et al.  Relationships between body size and abundance in ecology. , 2007, Trends in ecology & evolution.

[107]  M. Raupach,et al.  First insights into the biodiversity and biogeography of the Southern Ocean deep sea , 2007, Nature.

[108]  P. Legendre,et al.  vegan : Community Ecology Package. R package version 1.8-5 , 2007 .

[109]  R. O’Hara Species richness estimators: how many species can dance on the head of a pin? , 2005 .

[110]  K. I. Ugland,et al.  Estimation of species richness : Analysis of the methods developed by Chao and Karakassis , 2004 .

[111]  C. Smith,et al.  Polychaete species diversity in the central Pacific abyss: Local and regional patterns and relationships with productivity , 2002 .

[112]  Robert K. Colwell,et al.  THE ANT FAUNA OF A TROPICAL RAIN FOREST: ESTIMATING SPECIES RICHNESS THREE DIFFERENT WAYS , 2002 .

[113]  Robert K. Colwell,et al.  Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness , 2001 .

[114]  D. Pawson,et al.  Two New Pacific Ocean Species of Hyocrinid Crinoids (Echinodermata), with Comments on Presumed Giant-Dwarf Gradients Related to Seamounts and Abyssal Plains , 1999 .

[115]  Robert K. Colwell,et al.  Estimating terrestrial biodiversity through extrapolation. , 1994, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[116]  R. May,et al.  A dip into the deep seas , 1993, Nature.

[117]  N. Knowlton Sibling species in the sea , 1993 .

[118]  J. Grassle,et al.  Deep-Sea Species Richness: Regional and Local Diversity Estimates from Quantitative Bottom Samples , 1992, The American Naturalist.

[119]  A. Chao Estimating the population size for capture-recapture data with unequal catchability. , 1987, Biometrics.

[120]  L. Mullineaux Organisms living on manganese nodules and crusts: distribution and abundance at three North Pacific sites , 1987 .

[121]  D. Pawson Psychronaetes hanseni New genus New species Of Elasipodan Sea cucumber From The Eastern Central Pacific Echinodermata Holothuroidea , 1983 .

[122]  K. Burnham,et al.  Robust Estimation of Population Size When Capture Probabilities Vary Among Animals , 1979 .

[123]  M. Hill Diversity and Evenness: A Unifying Notation and Its Consequences , 1973 .

[124]  H. L. Sanders,et al.  Faunal diversity in the deep-sea , 1967 .