An enhanced analytical method for the subsonic indicial lift of two-dimensional aerofoils – with numerical cross-validation

Abstract Aerodynamic indicial-admittance functions are generated for the unsteady lift of two-dimensional aerofoils in subsonic flow, using an enhanced theoretical formulation which grants effective synthesis. Both a step-change in the angle of attack and a sharp-edge gust are considered as the flow perturbation. Convenient analytical approximations of the indicial functions are obtained by generalising those available for incompressible flow, taking advantage of acoustic wave theory for the non-circulatory airload and Prandtl–Glauert's scalability rule for the circulatory airload. An explicit formula is proposed for modelling the latter as function of the Mach number in the absence of shock waves, while damped oscillatory terms are introduced for better approximating the former. Indicial-admittance functions are then obtained for the lift development of a wing aerofoil using Euler-based simulations at several Mach numbers, thus providing with sound cross-validation. Appropriate tuning of the analytical expressions is also derived in order to mimic the numerical solutions. The rigor of superposing circulatory and non-circulatory theoretical contributions is thus verified in the light of computational fluid dynamics and all results are addressed with respect to the physical and mathematical assumptions employed, within a consistent framework.

[1]  Luigi Morino,et al.  A General Theory of Unsteady Compressible Potential Aerodynamics , 1974 .

[2]  J. A. Drischler,et al.  Numerical determination of indicial lift and moment functions for a two-dimensional sinking and pitching airfoil at Mach numbers 0.5 and 0.6 , 1952 .

[3]  Dominique Claude Marie Poirel Random dynamics of a structurally nonlinear airfoil in turbulent flow , 2001 .

[4]  David Eller,et al.  Efficient Laplace-Domain Aerodynamics for Load Analyses , 2013 .

[5]  I. E. Garrick On some reciprocal relations in the theory of nonstationary flows , 1938 .

[6]  T. Kármán,et al.  Airfoil Theory for Non-Uniform Motion , 1938 .

[7]  M. Karpel,et al.  Minimum-state unsteady aerodynamic approximations with flexible constraints , 1996 .

[8]  L. Peterson,et al.  Improved exponential time series approximation of unsteady aerodynamic operators , 1988 .

[9]  D. Peters Two-dimensional incompressible unsteady airfoil theory—An overview , 2008 .

[10]  Garret N. Vanderplaats,et al.  Numerical Optimization Techniques for Engineering Design: With Applications , 1984 .

[11]  T. Theodorsen General Theory of Aerodynamic Instability and the Mechanism of Flutter , 1934 .

[12]  Ruxandra Botez,et al.  Method of Unsteady Aerodynamic Forces Approximation for Aeroservoelastic Interactions , 2002 .

[13]  Jonathan E. Cooper,et al.  Introduction to Aircraft Aeroelasticity and Loads , 2007 .

[14]  J. Brink-Spalink,et al.  Correction of unsteady aerodynamic influence coefficients using experimental or CFD data , 2000 .

[15]  G. Hancock,et al.  The unsteady motion of a two-dimensional aerofoil in incompressible inviscid flow , 1978, Journal of Fluid Mechanics.

[16]  Paolo Mantegazza,et al.  A \free" approach to Computational Aeroelasticity , 2010 .

[17]  Marco Berci,et al.  Subsonic indicial aerodynamics for unsteady loads calculation via numerical and analytical methods : a preliminary assessment : AIAA 2015-3170 , 2015 .

[18]  Eastman N. Jacobs,et al.  The characteristics of 78 related airfoil sections from tests in the variable-density wind tunnel , 1932 .

[19]  Paul G. A. Cizmas,et al.  Mesh Generation and Deformation Algorithm for Aeroelasticity Simulations , 2007 .

[20]  Jan Koch,et al.  Subsonic Indicial Aerodynamics for Unsteady Loads Calculation via Numerical and Analytical Methods: a Preliminary Assessment , 2015 .

[21]  Ken Badcock,et al.  On the generation of flight dynamics aerodynamic tables by computational fluid dynamics , 2011 .

[22]  Leonardo Bergami,et al.  Indicial response function for finite-thickness airfoils, a semi-empirical approach , 2011 .

[23]  J. G. Leishman,et al.  Indicial lift approximations for two-dimensional subsonic flow as obtained from oscillatory measurements , 1993 .

[24]  W. M. Adams,et al.  Nonlinear programming extensions to rational function approximation methods for unsteady aerodynamic forces , 1988 .

[25]  A. Jameson,et al.  Lower-upper Symmetric-Gauss-Seidel method for the Euler and Navier-Stokes equations , 1988 .

[26]  Carol D. Wieseman Methodology for matching experimental and computational aerodynamic data , 1988 .

[27]  Reik Thormann,et al.  DLM-Correction Method for Aerodynamic Gust Response Prediction , 2013 .

[28]  Tae Ho Woo,et al.  Characteristics of Nuclear Spacecraft in Nano-Gravity for the Deep Space Explorer , 2014 .

[29]  Ülgen Gülçat,et al.  Fundamentals of Modern Unsteady Aerodynamics , 2010 .

[30]  Gary M. Graham Aeroelastic Reciprocity: An Indicial Response Formulation. , 1995 .

[31]  Marco Berci,et al.  Gust response of a flexible typical section via high- and (tuned) low-fidelity simulations , 2013 .

[32]  W. Eversman,et al.  Modified Exponential Series Approximation for the Theodorsen Function , 1991 .

[33]  Yousef Saad,et al.  A Flexible Inner-Outer Preconditioned GMRES Algorithm , 1993, SIAM J. Sci. Comput..

[34]  Gianluigi Rozza,et al.  Reduced Order Methods for Modeling and Computational Reduction , 2013 .

[35]  E. H. Dowell,et al.  A simple method for converting frequency domain aerodynamics to the time domain , 1980 .

[36]  Ashish Tewari,et al.  Multiple pole rational-function approximations for unsteady aerodynamics , 1993 .

[37]  Bryan Glaz,et al.  Approximate Modeling of Unsteady Aerodynamics for Hypersonic Aeroelasticity , 2010 .

[38]  J. Gordon Leishman,et al.  Principles of Helicopter Aerodynamics , 2000 .

[39]  David A. Peters,et al.  A State-Space Airloads Theory for Flexible Airfoils , 2006 .

[40]  Harvard Lomax,et al.  Two-and three-dimensional unsteady lift problems in high-speed flight , 1952 .

[41]  R. T. Jones The unsteady lift of a wing of finite aspect ratio , 1940 .

[42]  J. E. Cooper,et al.  Curve fitting approach for transonic flutter prediction , 2003, The Aeronautical Journal (1968).

[43]  Murray Tobak,et al.  On the use of the indicial-function concept in the analysis of unsteady motions of wings and wing-tail combinations , 1954 .

[44]  A. V. Balakrishnan Possio Integral Equation of Aeroelasticity Theory , 2003 .

[45]  K. L. Roger,et al.  Airplane Math Modeling Methods for Active Control Design , 1977 .

[46]  Herbert Wagner Über die Entstehung des dynamischen Auftriebes von Tragflügeln , 1925 .

[47]  V. Venkatakrishnan On the accuracy of limiters and convergence to steady state solutions , 1993 .

[48]  James D. Baeder,et al.  Indicial Aerodynamics in Compressible Flow-Direct Computational Fluid Dynamic Calculations , 1997 .

[49]  J. Katz,et al.  Low-Speed Aerodynamics , 1991 .

[50]  Stephan M. Winkler,et al.  Genetic Algorithms and Genetic Programming - Modern Concepts and Practical Applications , 2009 .

[51]  Altan Kayran Küssner's Function in the Sharp Edged Gust Problem-A Correction , 2006 .

[52]  R. N. Desmarais A continued fraction representation for Theodorsen's circulation function , 1980 .

[53]  Richard B. Holmes,et al.  A Course on Optimization and Best Approximation , 1972 .

[54]  P. Spalart A One-Equation Turbulence Model for Aerodynamic Flows , 1992 .

[55]  B. Mazelsky Numerical determination of indicial lift of a two-dimensional sinking airfoil at subsonic Mach numbers from oscillatory lift coefficients with calculations for Mach number 0.7 , 1951 .

[56]  R. Vepa,et al.  On the use of Pade approximants to represent unsteady aerodynamic loads for arbitrarily small motions of wings , 1976 .

[57]  M. J. Lighthill,et al.  Oscillating Airfoils at High Mach Number , 1953 .

[58]  Russell M. Cummings,et al.  Computational Investigation into the Use of Response Functions for Aerodynamic-Load Modeling , 2012 .

[59]  H. Glauert The elements of aerofoil and airscrew theory , 1926 .

[60]  Bernard Mazelsky,et al.  Determination of indicial lift and moment of a two-dimensional pitching airfoil at subsonic mach numbers from oscillatory coefficients with numerical calculations for a Mach number of 0.7 , 1952 .

[61]  R. Vepa Finite state modeling of aeroelastic systems , 1977 .

[62]  Solvability of the Generalized Possio Equation in 2D Subsonic Aeroelasticity , 2005, math/0507188.

[63]  W Sproles Darrell,et al.  Computer Program To Obtain Ordinates for NACA Airfoils , 1996 .

[64]  J. Alonso,et al.  SU2: An Open-Source Suite for Multiphysics Simulation and Design , 2016 .

[65]  M. Berci SEMI-ANALYTICAL REDUCED-ORDER MODELS FOR THE UNSTEADY AERODYNAMIC LOADS OF SUBSONIC WINGS , 2015 .

[66]  Frederic M. Hoblit,et al.  Gust Loads on Aircraft: Concepts and Applications , 1988 .

[67]  Marco Berci,et al.  Dynamic Response of Typical Section Using Variable-Fidelity Fluid Dynamics and Gust-Modeling Approaches—With Correction Methods , 2014 .

[68]  P. Tallec,et al.  Load and motion transfer algorithms for fluid/structure interaction problems with non-matching discrete interfaces: Momentum and energy conservation, optimal discretization and application to aeroelasticity , 1998 .

[69]  Ira H. Abbott,et al.  Summary of Airfoil Data , 1945 .

[70]  H. Dunn An analytical technique for approximating unsteady aerodynamics in the time domain , 1980 .

[71]  Robert T. Jones,et al.  Classical aerodynamic theory , 1979 .

[72]  H. Matthies,et al.  State-space representation of instationary two-dimensional airfoil aerodynamics , 2004 .

[73]  Massimo Gennaretti,et al.  Study of Reduced-Order Models for Gust-Respnse Analysis of Flexible Fixed Wings , 2004 .

[74]  Eli Livne,et al.  Future of Airplane Aeroelasticity , 2003 .

[75]  Thiemo Kier,et al.  Comparison of Unsteady Aerodynamic Modelling Methodologies with Respect to Flight Loads Analysis , 2005 .

[76]  Charbel Farhat,et al.  An ALE formulation of embedded boundary methods for tracking boundary layers in turbulent fluid-structure interaction problems , 2014, J. Comput. Phys..

[77]  W. R. Sears,et al.  Operational methods in the theory of airfoils in non-uniform motion , 1940 .

[78]  J. Anderson,et al.  Fundamentals of Aerodynamics , 1984 .

[79]  Marco Berci,et al.  A Subsonic Indicial Aerodynamics for the Unsteady Loads of Trapezoidal Wings , 2016 .

[80]  P. Roe Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes , 1997 .

[81]  Peretz P. Friedmann,et al.  New approach to finite-state modeling of unsteady aerodynamics , 1986 .

[83]  Ludwig Prandtl,et al.  Applications of Modern Hydrodynamics to Aeronautics , 1923 .

[84]  Harvard Lomax,et al.  The Indicial Lift and Pitching Moment for a Sinking or Pitching Two-Dimensional Wing Flying at Subsonic or Supersonic Speeds , 1951 .

[85]  Gertjan Looye,et al.  UNIFYING MANOEUVRE AND GUST LOADS ANALYSIS MODELS , 2009 .

[86]  H. Glauert,et al.  The Effect of Compressibility on the Lift of an Aerofoil , 1928 .

[87]  Dan Mateescu,et al.  Theoretical solutions for unsteady compressible subsonic flows past oscillating rigid and flexible airfoils , 2011 .

[88]  John R. Spreiter,et al.  Reciprocity relations in aerodynamics , 1952 .

[89]  Holt Ashley,et al.  Piston Theory-A New Aerodynamic Tool for the Aeroelastician , 1956 .

[90]  J. G. Leishman,et al.  Subsonic unsteady aerodynamics caused by gusts using the indicial method , 1996 .

[91]  Yuan-Cheng Fung,et al.  An introduction to the theory of aeroelasticity , 1955 .

[92]  Natalia Alexandrov,et al.  Multidisciplinary design optimization : state of the art , 1997 .

[93]  Tianshu Liu,et al.  Unsteady Thin-Airfoil Theory Revisited: Application of a Simple Lift Formula , 2015 .

[94]  A. Jirásek,et al.  Reduced order unsteady aerodynamic modeling for stability and control analysis using computational fluid dynamics , 2014 .

[95]  D. Peters,et al.  Finite state induced flow models. I - Two-dimensional thin airfoil , 1995 .

[96]  Steven L. Brunton,et al.  Empirical state-space representations for Theodorsen's lift model , 2013 .

[97]  Daniella E. Raveh,et al.  Reduced-Order Models for Nonlinear Unsteady Aerodynamics , 2001 .

[98]  Marin D. Guenov,et al.  Advances in Collaborative Civil Aeronautical Multidisciplinary Design Optimization , 2009 .

[99]  J. Leishman,et al.  State-space representation of unsteady airfoil behavior , 1990 .

[100]  W. Rodden,et al.  A doublet-lattice method for calculating lift distributions on oscillating surfaces in subsonic flows. , 1969 .

[101]  P Marzocca,et al.  Development of an indicial function approach for the two-dimensional incompressible/compressible aerodynamic load modelling , 2007 .