ARE ALL SHORT–HARD GAMMA-RAY BURSTS PRODUCED FROM MERGERS OF COMPACT STELLAR OBJECTS?

The origin and progenitors of short–hard gamma-ray bursts (GRBs) remain a puzzle and a highly debated topic. Recent Swift observations suggest that these GRBs may be related to catastrophic explosions in degenerate compact stars, denoted as “Type I” GRBs. The most popular models include the merger of two compact stellar objects (NS–NS or NS–BH). We utilize a Monte Carlo approach to determine whether a merger progenitor model can self-consistently account for all the observations of short–hard GRBs, including a sample with redshift measurements in the Swift era (z-known sample) and the CGRO/BATSE sample. We apply various merger time delay distributions invoked in compact star merger models to derive the redshift distributions of these Type I GRBs, and then constrain the unknown luminosity function of Type I GRBs using the observed luminosity–redshift (L–z) distributions of the z-known sample. The best luminosity function model, together with the adopted merger delay model, is then applied to confront the peak flux distribution (log N–log P distribution) of the BATSE and Swift samples. We find that for all the merger models invoking a range of merger delay timescales (including those invoking a large fraction of “prompt mergers”), it is difficult to reconcile the models with all the data. The data are instead statistically consistent with the following two possible scenarios. First, that short/hard GRBs are a superposition of compact-star–merger–origin (Type I) GRBs and a population of GRBs that track the star formation history, which are probably related to the deaths of massive stars (Type II GRBs). Second, the entire short/hard GRB population is consistent with a typical delay of 2 Gyr with respect to the star formation history with modest scatter. This may point toward a different Type I progenitor than the traditional compact star merger models.

[1]  T. Sakamoto,et al.  IDENTIFYING THE LOCATION IN THE HOST GALAXY OF THE SHORT GRB 111117A WITH THE CHANDRA SUBARCSECOND POSITION , 2012, 1205.6774.

[2]  L. A. Antonelli,et al.  THE AFTERGLOWS OF SWIFT-ERA GAMMA-RAY BURSTS. II. TYPE I GRB VERSUS TYPE II GRB OPTICAL AFTERGLOWS , 2008, 0804.1959.

[3]  E. Berger,et al.  THE STELLAR AGES AND MASSES OF SHORT GAMMA-RAY BURST HOST GALAXIES: INVESTIGATING THE PROGENITOR DELAY TIME DISTRIBUTION AND THE ROLE OF MASS AND STAR FORMATION IN THE SHORT GAMMA-RAY BURST RATE , 2010, 1009.1147.

[4]  S. Nagataki,et al.  Origins of short gamma-ray bursts deduced from offsets in their host galaxies revisited , 2010, 1004.2302.

[5]  D. A. Kann,et al.  Optical and near-infrared follow-up observations of four Fermi/LAT GRBs: redshifts, afterglows, energetics, and host galaxies , 2010, 1003.3885.

[6]  Bing Zhang,et al.  Probing the nature of high-z short GRB 090426 with its early optical and X-ray afterglows , 2010, 1002.0889.

[7]  Bing Zhang,et al.  A NEW CLASSIFICATION METHOD FOR GAMMA-RAY BURSTS , 2010, 1001.0598.

[8]  Nathaniel R. Butler,et al.  GRB 090426: the environment of a rest-frame 0.35-s gamma-ray burst at a redshift of 2.609 , 2009, 0907.1661.

[9]  R. E. Hughes,et al.  A limit on the variation of the speed of light arising from quantum gravity effects , 2009, Nature.

[10]  Davide Lazzati,et al.  SHORT-DURATION GAMMA-RAY BURSTS FROM OFF-AXIS COLLAPSARS , 2009, 0911.3313.

[11]  F. Pedichini,et al.  GRB 090426: the farthest short gamma-ray burst? , 2009, 0911.0046.

[12]  E. Berger,et al.  HUBBLE SPACE TELESCOPE OBSERVATIONS OF SHORT GAMMA-RAY BURST HOST GALAXIES: MORPHOLOGIES, OFFSETS, AND LOCAL ENVIRONMENTS , 2009, 0909.1804.

[13]  William H. Lee,et al.  Limits on radioactive powered emission associated with a short-hard GRB 070724A in a star-forming galaxy , 2009, 0908.0030.

[14]  Andrew M. Hopkins,et al.  THE STAR FORMATION RATE IN THE REIONIZATION ERA AS INDICATED BY GAMMA-RAY BURSTS , 2009, 0906.0590.

[15]  Bing Zhang,et al.  DISCERNING THE PHYSICAL ORIGINS OF COSMOLOGICAL GAMMA-RAY BURSTS BASED ON MULTIPLE OBSERVATIONAL CRITERIA: THE CASES OF z = 6.7 GRB 080913, z = 8.2 GRB 090423, AND SOME SHORT/HARD GRBs , 2009, 0902.2419.

[16]  G. Ghirlanda,et al.  Short versus long gamma-ray bursts: spectra, energetics, and luminosities , 2009, 0902.0983.

[17]  J. Smith,et al.  The path to the enhanced and advanced LIGO gravitational-wave detectors , 2009, 0902.0381.

[18]  L. A. Antonelli,et al.  The optical afterglows and host galaxies of three short/hard gamma-ray bursts , 2009, 0901.4038.

[19]  A. Fruchter,et al.  A COMPARISON OF THE AFTERGLOWS OF SHORT- AND LONG-DURATION GAMMA-RAY BURSTS , 2008, 0806.3607.

[20]  Chris L. Fryer,et al.  ON THE ORIGIN OF THE HIGHEST REDSHIFT GAMMA-RAY BURSTS , 2008, 0812.2470.

[21]  G. Sala,et al.  A STRONG OPTICAL FLARE BEFORE THE RISING AFTERGLOW OF GRB 080129 , 2008, 0811.4291.

[22]  E. Berger THE HOST GALAXIES OF SHORT-DURATION GAMMA-RAY BURSTS: LUMINOSITIES, METALLICITIES, AND STAR FORMATION RATES , 2008, 0805.0306.

[23]  L. Kewley,et al.  GRB 070714B—DISCOVERY OF THE HIGHEST SPECTROSCOPICALLY CONFIRMED SHORT BURST REDSHIFT , 2008, 0808.2610.

[24]  M. Dopita,et al.  GRBs 070429B and 070714B: The High End of the Short-Duration Gamma-Ray Burst Redshift Distribution , 2008, 0802.0874.

[25]  Bing Zhang,et al.  Low-luminosity gamma-ray bursts as a distinct GRB population: a firmer case from multiple criteria constraints , 2008, 0801.4751.

[26]  Charles D. Bailyn,et al.  Connecting Gamma-Ray Bursts and Galaxies: The Probability of Chance Coincidence , 2007, 0708.1510.

[27]  Makoto Matsumoto,et al.  SIMD-Oriented Fast Mersenne Twister: a 128-bit Pseudorandom Number Generator , 2008 .

[28]  Chris L. Fryer,et al.  Short-Hard Gamma-Ray Bursts in Young Host Galaxies: the Effect of Prompt Twins , 2007, 0712.3309.

[29]  A. J. Levan,et al.  THE AFTERGLOWS OF SWIFT-ERA GAMMA-RAY BURSTS. I. COMPARING PRE-SWIFT AND SWIFT-ERA LONG/SOFT (TYPE II) GRB OPTICAL AFTERGLOWS , 2007, 0712.2186.

[30]  M. Colpi,et al.  Short Gamma‐ray bursts: a bimodal origin? , 2007, 0710.3099.

[31]  T. Sakamoto,et al.  The First Swift BAT Gamma-Ray Burst Catalog , 2007, 0707.4626.

[32]  E. Berger,et al.  The Prompt Gamma-Ray and Afterglow Energies of Short-Duration Gamma-Ray Bursts , 2007, astro-ph/0702694.

[33]  T. Sakamoto,et al.  Evidence of Exponential Decay Emission in the Swift Gamma-Ray Bursts , 2007, 0707.2170.

[34]  N. Gehrels,et al.  Making a Short Gamma-Ray Burst from a Long One: Implications for the Nature of GRB 060614 , 2006, astro-ph/0612238.

[35]  P. B. Cameron,et al.  A New Population of High-Redshift Short-Duration Gamma-Ray Bursts , 2006, astro-ph/0611128.

[36]  J. X. Prochaska,et al.  A Putative Early-Type Host Galaxy for GRB 060502B: Implications for the Progenitors of Short-Duration Hard-Spectrum Bursts , 2006, astro-ph/0607223.

[37]  Bing Zhang,et al.  Low-Luminosity Gamma-Ray Bursts as a Unique Population: Luminosity Function, Local Rate, and Beaming Factor , 2006, astro-ph/0605200.

[38]  Enrico Ramirez-Ruiz,et al.  Deducing the Lifetime of Short Gamma-Ray Burst Progenitors from Host Galaxy Demography , 2006, astro-ph/0601622.

[39]  E. O. Ofek,et al.  A novel explosive process is required for the γ-ray burst GRB 060614 , 2006, Nature.

[40]  Derek B. Fox,et al.  The Local Rate and the Progenitor Lifetimes of Short-Hard Gamma-Ray Bursts: Synthesis and Predictions for the Laser Interferometer Gravitational-Wave Observatory , 2006 .

[41]  P. Brown,et al.  The association of GRB 060218 with a supernova and the evolution of the shock wave , 2006, Nature.

[42]  L. Kewley,et al.  No supernovae associated with two long-duration γ-ray bursts , 2006, Nature.

[43]  L. A. Antonelli,et al.  An enigmatic long-lasting γ-ray burst not accompanied by a bright supernova , 2006, Nature.

[44]  D. Lamb,et al.  HETE-2 Localizations and Observations of Four Short Gamma-Ray Bursts: GRBs 010326B, 040802, 051211 and 060121 , 2006, astro-ph/0605570.

[45]  D. Lamb,et al.  GRB 060121: Implications of a Short-/Intermediate-Duration γ-Ray Burst at High Redshift , 2006, astro-ph/0605516.

[46]  T. Piran,et al.  The Distances of Short-Hard Gamma-Ray Bursts and the Soft Gamma-Ray Repeater Connection , 2006 .

[47]  D. A. Kann,et al.  An optical supernova associated with the X-ray flash XRF 060218 , 2006, Nature.

[48]  J. Fynbo,et al.  The Faint Afterglow and Host Galaxy of the Short-Hard GRB 060121 , 2006, astro-ph/0603282.

[49]  David L. Band,et al.  Postlaunch Analysis of Swift’s Gamma-Ray Burst Detection Sensitivity , 2006, astro-ph/0602267.

[50]  D. Frail,et al.  The Afterglow, Energetics, and Host Galaxy of the Short-Hard Gamma-Ray Burst 051221a , 2006, astro-ph/0601455.

[51]  D. Lamb,et al.  A Study of Compact Object Mergers as Short Gamma-Ray Burst Progenitors , 2006, astro-ph/0601458.

[52]  C. Dermer,et al.  Collapse of Neutron Stars to Black Holes in Binary Systems: A Model for Short Gamma-Ray Bursts , 2006, astro-ph/0601142.

[53]  T. Piran,et al.  The BATSE-Swift luminosity and redshift distributions of short-duration GRBs , 2005, astro-ph/0511239.

[54]  S. McMillan,et al.  Short gamma-ray bursts from binary neutron star mergers in globular clusters , 2005, astro-ph/0512654.

[55]  P. Giommi,et al.  An origin for short γ-ray bursts unassociated with current star formation , 2005, Nature.

[56]  D. Fox,et al.  The Local Rate and the Progenitor Lifetimes of Short-Hard Gamma-Ray Bursts: Synthesis and Predictions for LIGO , 2005, astro-ph/0511254.

[57]  J.-L. Atteia,et al.  Discovery of the short γ-ray burst GRB 050709 , 2005, Nature.

[58]  M. M. Kasliwal,et al.  The afterglow of GRB 050709 and the nature of the short-hard γ-ray bursts , 2005, Nature.

[59]  Jesper Sollerman,et al.  The optical afterglow of the short γ-ray burst GRB 050709 , 2005, Nature.

[60]  E. Ramirez-Ruiz,et al.  The Galaxy Hosts and Large-Scale Environments of Short-Hard Gamma-Ray Bursts , 2005, astro-ph/0510022.

[61]  A. Levan,et al.  An origin in the local Universe for some short γ-ray bursts , 2005, Nature.

[62]  P. B. Cameron,et al.  The afterglow and elliptical host galaxy of the short γ-ray burst GRB 050724 , 2005, Nature.

[63]  F. Prada,et al.  GRB 050509b : the elusive optical/nIR/mm afterglow of a short-duration GRB , 2005, astro-ph/0506662.

[64]  T. Sakamoto,et al.  A short γ-ray burst apparently associated with an elliptical galaxy at redshift z = 0.225 , 2005, Nature.

[65]  E. Ramirez-Ruiz,et al.  Closing in on a Short-Hard Burst Progenitor: Constraints from Early-Time Optical Imaging and Spectroscopy of a Possible Host Galaxy of GRB 050509b , 2005, astro-ph/0505480.

[66]  D. Frail,et al.  Afterglows, Redshifts, and Properties of Swift Gamma-Ray Bursts , 2005, astro-ph/0505107.

[67]  T. Piran,et al.  The distances of short-hard GRBs and the SGR connection , 2005, astro-ph/0502148.

[68]  T. Piran,et al.  Astronomy & Astrophysics manuscript no. (will be inserted by hand later) The Luminosity and Redshift Distributions of Short-Duration , 2004 .

[69]  S. Ando,et al.  Short gamma-ray bursts as a possible probe of binary neutron star mergers , 2004, astro-ph/0405411.

[70]  X. F. Wu,et al.  The Luminosity-Ep Relation within Gamma-Ray Bursts and the Implications for Fireball Models , 2004, astro-ph/0403397.

[71]  G. Ghisellini,et al.  The spectra of short gamma-ray bursts , 2003, astro-ph/0310861.

[72]  K. Pedersen,et al.  A very energetic supernova associated with the γ-ray burst of 29 March 2003 , 2003, Nature.

[73]  O. Pols,et al.  The late stages of evolution of helium star-neutron star binaries and the formation of double neutron star systems , 2003, astro-ph/0306066.

[74]  Warren R. Brown,et al.  Spectroscopic Discovery of the Supernova 2003dh Associated with GRB 030329 , 2003, astro-ph/0304173.

[75]  V. Kalogera,et al.  The Role of Helium Stars in the Formation of Double Neutron Stars , 2002, astro-ph/0210267.

[76]  Tomasz Bulik,et al.  Merger Sites of Double Neutron Stars and Their Host Galaxies , 2002, astro-ph/0204416.

[77]  Bronislaw Rudak,et al.  Study of Gamma-Ray Burst Binary Progenitors , 2001, astro-ph/0112122.

[78]  P. Madau,et al.  ApJ, in press Preprint typeset using L ATEX style emulateapj v. 04/03/99 ON THE ASSOCIATION OF GAMMA–RAY BURSTS WITH MASSIVE STARS: IMPLICATIONS FOR NUMBER COUNTS AND LENSING STATISTICS , 2000 .

[79]  C. Kouveliotou,et al.  The Fourth BATSE Gamma-Ray Burst Catalog (Revised) , 1999, astro-ph/9903205.

[80]  T. Loredo,et al.  Inferring the Spatial and Energy Distribution of Gamma-Ray Burst Sources. III. Anisotropic Models , 1997, astro-ph/9701111.

[81]  Jing-yao Hu,et al.  The Collapse of Neutron Stars in High-Mass Binaries as the Energy Source for the Gamma-Ray Bursts , 1997, astro-ph/9708095.

[82]  C. Kouveliotou,et al.  Identification of two classes of gamma-ray bursts , 1993 .

[83]  D. Palmer,et al.  BATSE observations of gamma-ray burst spectra. I: Spectral diversity , 1993 .

[84]  T. Piran,et al.  Gamma-ray bursts as the death throes of massive binary stars , 1992, astro-ph/9204001.

[85]  T. Piran The implications of the Compton (GRO) observations for cosmological gamma-ray bursts , 1992 .

[86]  D. Bhattacharya,et al.  Formation and evolution of binary and millisecond radio pulsars , 1991 .

[87]  M. Livio,et al.  Nucleosynthesis, neutrino bursts and γ-rays from coalescing neutron stars , 1989, Nature.

[88]  B. Paczyński Gamma-ray bursters at cosmological distances , 1986 .

[89]  J. Lattimer,et al.  The tidal disruption of neutron stars by black holes in close binaries. , 1976 .