The genetic basis of colorectal cancer: insights into critical pathways of tumorigenesis.

The impact that modern molecular biology has had on elucidating the genetic basis of neoplasia is best illustrated by the paradigm of colon cancer. Several unique features of colon cancer biology have served to accelerate the discovery process. The development of a readily evident precursor lesion, the adenomatous polyp, has made it possible to construct a model of the sequential genetic events in cancer initiation and progression. Insights into the molecular basis of the relatively rare inherited syndromes familial adenomatous polyposis (FAP) and hereditary nonpolyposis colorectal cancer (HNPCC) have had profound implications for tumorigenesis in the more widespread sporadic forms of colon cancer.

[1]  W. Birchmeier,et al.  Functional interaction of an axin homolog, conductin, with beta-catenin, APC, and GSK3beta. , 1998, Science.

[2]  R. Kolodner,et al.  Biochemistry and genetics of eukaryotic mismatch repair. , 1996, Genes & development.

[3]  C. Dang,et al.  Neoplastic Transformation of RK3E by Mutant β-Catenin Requires Deregulation of Tcf/Lef Transcription but Not Activation of c-myc Expression , 1999, Molecular and Cellular Biology.

[4]  B. Vogelstein,et al.  p53 mutations in human cancers. , 1991, Science.

[5]  K. Kinzler,et al.  Genetic instability in colorectal cancers , 1997, Nature.

[6]  H. Hagiwara,et al.  The insulin-like growth factor II receptor gene is mutated in genetically unstable cancers of the endometrium, stomach, and colorectum. , 1997, Cancer research.

[7]  Hans Clevers,et al.  Activation of β-Catenin-Tcf Signaling in Colon Cancer by Mutations in β-Catenin or APC , 1997, Science.

[8]  L. Aaltonen,et al.  MSH2 and MLH1 mutations in sporadic replication error‐positive colorectal carcinoma as assessed by two‐dimensional DNA electrophoresis , 1997, Genes, chromosomes & cancer.

[9]  K. Kinzler,et al.  A Naturally Occurring hPMS2 Mutation Can Confer a Dominant Negative Mutator Phenotype , 1998, Molecular and Cellular Biology.

[10]  J. G. Alvarez,et al.  Activators of the nuclear receptor PPARγ enhance colon polyp formation , 1998, Nature Medicine.

[11]  K. Kinzler,et al.  Association of the APC tumor suppressor protein with catenins. , 1993, Science.

[12]  K. Miyazono,et al.  HNPCC associated with germline mutation in the TGF-β type II receptor gene , 1998, Nature Genetics.

[13]  B. Vogelstein,et al.  A genetic model for colorectal tumorigenesis , 1990, Cell.

[14]  T. Akiyama,et al.  Binding of APC to the Human Homolog of the Drosophila Discs Large Tumor Suppressor Protein , 1996, Science.

[15]  F. van Roy,et al.  Beta-catenin mutations are more frequent in small colorectal adenomas than in larger adenomas and invasive carcinomas. , 1999, Cancer research.

[16]  Paul Polakis,et al.  The metalloproteinase matrilysin is a target of β-catenin transactivation in intestinal tumors , 1999, Oncogene.

[17]  Rajnish A. Gupta,et al.  Activation of PPARγ leads to inhibition of anchorage-independent growth of human colorectal cancer cells , 1998 .

[18]  G. Thomas,et al.  Alternative genetic pathways in colorectal carcinogenesis. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[19]  R. Gardner,et al.  The clinical correlates of a 3' truncating mutation (codons 1982-1983) in the adenomatous polyposis coli gene. , 1997, Gastroenterology.

[20]  M. Hawn,et al.  Competency in mismatch repair prohibits clonal expansion of cancer cells treated with N-methyl-N'-nitro-N-nitrosoguanidine. , 1996, The Journal of clinical investigation.

[21]  Frank McCormick,et al.  β-Catenin regulates expression of cyclin D1 in colon carcinoma cells , 1999, Nature.

[22]  Kathleen R. Cho,et al.  The DCC gene: structural analysis and mutations in colorectal carcinomas. , 1994, Genomics.

[23]  A. Feinberg,et al.  Hypomethylation of DNA from benign and malignant human colon neoplasms. , 1985, Science.

[24]  A. Chapelle,et al.  Mismatch repair gene defects in sporadic colorectal cancers with microsatellite instability , 1995, Nature Genetics.

[25]  M. Sporn,et al.  Autoinduction of transforming growth factor beta 1 is mediated by the AP-1 complex , 1990, Molecular and cellular biology.

[26]  R. DuBois,et al.  Cyclooxygenase Regulates Angiogenesis Induced by Colon Cancer Cells , 1998, Cell.

[27]  Jian-ming Li,et al.  Transforming Growth Factor β Activates the Promoter of Cyclin-dependent Kinase Inhibitor p15INK4B through an Sp1 Consensus Site (*) , 1995, The Journal of Biological Chemistry.

[28]  K. Kinzler,et al.  Disruption of p53 in human cancer cells alters the responses to therapeutic agents. , 1999, The Journal of clinical investigation.

[29]  M. Taketo,et al.  Intestinal polyposis in mice with a dominant stable mutation of the β‐catenin gene , 1999, The EMBO journal.

[30]  D. Louis,et al.  Mapping of a target region of allelic loss to a 0.5-cM interval on chromosome 22q13 in human colorectal cancer. , 1999, Gastroenterology.

[31]  P. Peltomäki,et al.  Mutations predisposing to hereditary nonpolyposis colorectal cancer: database and results of a collaborative study. The International Collaborative Group on Hereditary Nonpolyposis Colorectal Cancer. , 1997, Gastroenterology.

[32]  M. Radman,et al.  Inactivation of the mouse Msh2 gene results in mismatch repair deficiency, methylation tolerance, hyperrecombination, and predisposition to cancer , 1995, Cell.

[33]  W F Bodmer,et al.  Target genes of beta-catenin-T cell-factor/lymphoid-enhancer-factor signaling in human colorectal carcinomas. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[34]  Bert Vogelstein,et al.  Mutations of mitotic checkpoint genes in human cancers , 1998, Nature.

[35]  Y. Nakamura,et al.  Allelotype of colorectal carcinomas. , 1989, Science.

[36]  M. Leppert,et al.  Alleles of APC modulate the frequency and classes of mutations that lead to colon polyps , 1998, Nature Genetics.

[37]  M Oshima,et al.  Loss of Apc heterozygosity and abnormal tissue building in nascent intestinal polyps in mice carrying a truncated Apc gene. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[38]  K. Kinzler,et al.  Identification of ras oncogene mutations in the stool of patients with curable colorectal tumors. , 1992, Science.

[39]  Peter A. Jones,et al.  Cancer-epigenetics comes of age , 1999, Nature Genetics.

[40]  A. Zwinderman,et al.  Clinical findings with implications for genetic testing in families with clustering of colorectal cancer. , 1998, The New England journal of medicine.

[41]  A. Rustgi,et al.  DNA mismatch repair and cancer. , 1995, Gastroenterology.

[42]  I. Nimmrich,et al.  A β‐catenin mutation in a sporadic colorectal tumor of the RER phenotype and absence of β‐catenin germline mutations in FAP patients , 1998, Genes, chromosomes & cancer.

[43]  S. Baylin,et al.  High expression of the DNA methyltransferase gene characterizes human neoplastic cells and progression stages of colon cancer. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[44]  C. L. Adams,et al.  The adenomatous polyposis coli tumor suppressor protein localizes to plasma membrane sites involved in active cell migration , 1996, The Journal of cell biology.

[45]  M. Washington,et al.  Cyclooxygenase 2 expression is increased in the stroma of colon carcinomas from IL-10(-/-) mice. , 2000, Gastroenterology.

[46]  Margaret Robertson,et al.  Identification and characterization of the familial adenomatous polyposis coli gene , 1991, Cell.

[47]  T. Iwama,et al.  Frequent Mutation of β-Catenin and APC Genes in Primary Colorectal Tumors from Patients with Hereditary Nonpolyposis Colorectal Cancer , 1999 .

[48]  R. Coffey,et al.  Up-regulation of cyclooxygenase 2 gene expression in human colorectal adenomas and adenocarcinomas. , 1994, Gastroenterology.

[49]  J. Hsieh,et al.  Induction of apoptosis and G2/M cell cycle arrest by DCC , 1999, Oncogene.

[50]  Y. Takagi,et al.  Somatic alterations of the DPC4 gene in human colorectal cancers in vivo. , 1996, Gastroenterology.

[51]  G. Thomas,et al.  Alleles of the APC gene: An attenuated form of familial polyposis , 1993, Cell.

[52]  T. Iwama,et al.  Molecular nature of colon tumors in hereditary nonpolyposis colon cancer, familial polyposis, and sporadic colon cancer. , 1996, Gastroenterology.

[53]  M. Radman,et al.  HNPCC-like cancer predisposition in mice through simultaneous loss of Msh3 and Msh6 mismatch-repair protein functions , 1999, Nature Genetics.

[54]  R Kucherlapati,et al.  Apc1638T: a mouse model delineating critical domains of the adenomatous polyposis coli protein involved in tumorigenesis and development. , 1999, Genes & development.

[55]  K. Kinzler,et al.  Lessons from Hereditary Colorectal Cancer , 1996, Cell.

[56]  K. Kinzler,et al.  Analysis of mismatch repair genes in hereditary non–polyposis colorectal cancer patients , 1996, Nature Medicine.

[57]  Y. Fu,et al.  Association of K-ras mutations with p16 methylation in human colon cancer. , 1999, Gastroenterology.

[58]  Kohei Miyazono,et al.  TGF-β signalling from cell membrane to nucleus through SMAD proteins , 1997, Nature.

[59]  R. Lothe,et al.  Somatic mutations in the hMSH2 gene in microsatellite unstable colorectal carcinomas. , 1995, Human Molecular Genetics.

[60]  J. Morrow,et al.  Inhibition of human colon cancer cell growth by selective inhibition of cyclooxygenase-2. , 1997, The Journal of clinical investigation.

[61]  C. Prives Signaling to p53 Breaking the MDM2–p53 Circuit , 1998, Cell.

[62]  Paul Polakis,et al.  Binding of GSK3β to the APC-β-Catenin Complex and Regulation of Complex Assembly , 1996, Science.

[63]  S. Bull,et al.  Tumor microsatellite instability and clinical outcome in young patients with colorectal cancer. , 2000, The New England journal of medicine.

[64]  S Srivastava,et al.  A National Cancer Institute Workshop on Microsatellite Instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. , 1998, Cancer research.

[65]  K. Kinzler,et al.  Mutational inactivation of transforming growth factor beta receptor type II in microsatellite stable colon cancers. , 1999, Cancer research.

[66]  K. Kinzler,et al.  Erratum: Multiple Intestinal Neoplasia Caused By a Mutation in the Murine Homolog of the APC Gene , 1992, Science.

[67]  J. Westwick,et al.  Oncogenic ras induces gastrin gene expression in colon cancer. , 1998, Gastroenterology.

[68]  K. Kinzler,et al.  PPARδ Is an APC-Regulated Target of Nonsteroidal Anti-Inflammatory Drugs , 1999, Cell.

[69]  E. Hafen,et al.  Ras--a versatile cellular switch. , 1998, Current opinion in genetics & development.

[70]  S Ichii,et al.  Somatic mutations of the APC gene in colorectal tumors: mutation cluster region in the APC gene. , 1992, Human molecular genetics.

[71]  A. Sparks,et al.  Identification of c-MYC as a target of the APC pathway. , 1998, Science.

[72]  M. Loda,et al.  The DCC protein and prognosis in colorectal cancer. , 1996, The New England journal of medicine.

[73]  J. Auwerx,et al.  Activation of the peroxisome proliferator-activated receptor γ promotes the development of colon tumors in C57BL/6J-APCMin/+ mice , 1998, Nature Medicine.

[74]  A. Carothers,et al.  Microsatellite instability and the role of hMSH2 in sporadic colorectalcancer. , 1996, Oncogene.

[75]  Anita B. Roberts,et al.  Tumor suppressor activity of the TGF-β pathway in human cancers , 1996 .

[76]  Samuel Singer,et al.  Differentiation and reversal of malignant changes in colon cancer through PPARγ , 1998, Nature Medicine.

[77]  C. Boland,et al.  Post-translational processing of gastrin in neoplastic human colonic tissues. , 1992, Biochemical and biophysical research communications.

[78]  Bert Vogelstein,et al.  APC mutations occur early during colorectal tumorigenesis , 1992, Nature.

[79]  K. Kinzler,et al.  Mutations of chromosome 5q21 genes in FAP and colorectal cancer patients. , 1991, Science.

[80]  J. Herman,et al.  Expression of an exogenous eukaryotic DNA methyltransferase gene induces transformation of NIH 3T3 cells. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[81]  R. Kucherlapati,et al.  Tumorigenesis in Mlh1 and Mlh1/Apc1638N mutant mice. , 1999, Cancer research.

[82]  B. Leggett,et al.  Microsatellite instability in the insulin–like growth factor II receptor gene in gastrointestinal tumours , 1996, Nature Genetics.

[83]  H. Yamamoto,et al.  Frameshift mutations at mononucleotide repeats in caspase-5 and other target genes in endometrial and gastrointestinal cancer of the microsatellite mutator phenotype. , 1999, Cancer research.

[84]  J. Rehfeld,et al.  Expression but incomplete maturation of progastrin in colorectal carcinomas. , 1993, Gastroenterology.

[85]  G. Thomas,et al.  Familial adenomatous polyposis: desmoid tumours and lack of ophthalmic lesions (CHRPE) associated with APC mutations beyond codon 1444. , 1995, Human molecular genetics.

[86]  Bruno C. Hancock,et al.  Suppression of Intestinal Polyposis in Apc Δ716 Knockout Mice by Inhibition of Cyclooxygenase 2 (COX-2) , 1996, Cell.

[87]  L. Kasturi,et al.  Biallelic inactivation of hMLH1 by epigenetic gene silencing, a novel mechanism causing human MSI cancers. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[88]  Pomila Singh,et al.  Insulinlike growth factors and binding proteins in colon cancer. , 1993, Gastroenterology.

[89]  Bert Vogelstein,et al.  Mutational Analysis of the APC/β-Catenin/Tcf Pathway in Colorectal Cancer , 1998 .

[90]  J C Reed,et al.  Somatic Frameshift Mutations in the BAX Gene in Colon Cancers of the Microsatellite Mutator Phenotype , 1997, Science.

[91]  K. Kinzler,et al.  Frequency of Smad gene mutations in human cancers. , 1997, Cancer research.

[92]  R. DuBois,et al.  Aspirin use and potential mechanisms for colorectal cancer prevention. , 1997, The Journal of clinical investigation.

[93]  T. Kanematsu,et al.  Mutations of the p53 gene in the stool of patients with resectable colorectal cancer , 1996, Cancer.

[94]  N. Matsubara,et al.  Mutations of E2F-4 trinucleotide repeats in colorectal cancer with microsatellite instability. , 1996, Biochemical and biophysical research communications.

[95]  Raymond L. White,et al.  Regulation of β-Catenin Signaling by the B56 Subunit of Protein Phosphatase 2A , 1999 .

[96]  J. Minna,et al.  Alterations of the PPP2R1B gene in human lung and colon cancer. , 1998, Science.

[97]  Timothy J. Yeatman,et al.  Activating SRC mutation in a subset of advanced human colon cancers , 1999, Nature Genetics.

[98]  H. Sheng,et al.  G1 delay in cells overexpressing prostaglandin endoperoxide synthase-2. , 1996, Cancer research.

[99]  Irene L Andrulis,et al.  MADR2 Maps to 18q21 and Encodes a TGFβ–Regulated MAD–Related Protein That Is Functionally Mutated in Colorectal Carcinoma , 1996, Cell.

[100]  D. Podolsky,et al.  Effects of growth factors on an intestinal epithelial cell line: transforming growth factor beta inhibits proliferation and stimulates differentiation. , 1987, Biochemical and biophysical research communications.

[101]  K. Kinzler,et al.  Inactivation of the type II TGF-beta receptor in colon cancer cells with microsatellite instability. , 1995, Science.

[102]  J. Herman,et al.  Incidence and functional consequences of hMLH1 promoter hypermethylation in colorectal carcinoma. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[103]  Hans Clevers,et al.  The TAK1–NLK–MAPK-related pathway antagonizes signalling between β-catenin and transcription factor TCF , 1999, Nature.

[104]  M. Fukayama,et al.  Characteristics of somatic mutation of the adenomatous polyposis coli gene in colorectal tumors. , 1994, Cancer research.

[105]  H. Ostrer,et al.  Familial colorectal cancer in Ashkenazim due to a hypermutable tract in APC , 1997, Nature Genetics.

[106]  R. Fodde,et al.  Cancer risk in families with hereditary nonpolyposis colorectal cancer diagnosed by mutation analysis. , 1996, Gastroenterology.

[107]  Junji Kato,et al.  Aberrant Crypt Foci of the Colon as Precursors of Adenoma and Cancer , 1998 .

[108]  G. Thomas,et al.  Restriction of ocular fundus lesions to a specific subgroup of APC mutations in adenomatous polyposis coli patients , 1993, Cell.

[109]  Georgia Chenevix-Trench,et al.  CDX2, a human homologue of Drosophila caudal, is mutated in both alleles in a replication error positive colorectal cancer , 1998, Oncogene.

[110]  Hiroyuki Yamamoto,et al.  Frameshift mutator mutations , 1996, Nature.

[111]  King-Jen Chang,et al.  Hypermethylation of the p16 Gene in Sporadic T3N0M0 Stage Colorectal Cancers: Association with DNA Replication Error and Shorter Survival , 1999, Oncology.

[112]  J. Bos,et al.  The role of p21ras in receptor tyrosine kinase signalling. , 1994, Biochimica et biophysica acta.

[113]  G. Cooper,et al.  Ras links growth factor signaling to the cell cycle machinery via regulation of cyclin D1 and the Cdk inhibitor p27KIP1 , 1997, Molecular and cellular biology.

[114]  Y. Nakamura,et al.  Genetic alterations during colorectal-tumor development. , 1988, The New England journal of medicine.

[115]  B. Vogelstein,et al.  Accumulated clonal genetic alterations in familial and sporadic colorectal carcinomas with widespread instability in microsatellite sequences. , 1998, The American journal of pathology.

[116]  F. Masiarz,et al.  Association of the APC gene product with beta-catenin. , 1993, Science.

[117]  A. V. van Zonneveld,et al.  Identification of regulatory sequences in the type 1 plasminogen activator inhibitor gene responsive to transforming growth factor beta. , 1991, The Journal of biological chemistry.

[118]  R. Weinberg,et al.  Suppression of intestinal neoplasia by DNA hypomethylation , 1995, Cell.

[119]  G. Thomas,et al.  Frequent frameshift mutations of the TCF-4 gene in colorectal cancers with microsatellite instability. , 1999, Cancer research.

[120]  Z. F. Liu,et al.  Allelic loss of chromosome 18q and prognosis in colorectal cancer. , 1994, The New England journal of medicine.

[121]  Xiao-Fan Wang,et al.  Functional Analysis of the Transforming Growth Factor βResponsive Elements in the WAF1/Cip1/p21 Promoter (*) , 1995, The Journal of Biological Chemistry.

[122]  B. Spiegelman,et al.  Loss-of-Function Mutations in PPARγ Associated with Human Colon Cancer , 1999 .

[123]  D. Reisman,et al.  Transforming growth factor-beta 1 inhibits cyclin D1 expression in intestinal epithelial cells. , 1995, Oncogene.

[124]  P. Laird,et al.  CpG island hypermethylation in human colorectal tumors is not associated with DNA methyltransferase overexpression. , 1999, Cancer research.

[125]  C. Prives,et al.  p53: puzzle and paradigm. , 1996, Genes & development.

[126]  Hiroyuki Miyoshi,et al.  Intestinal Tumorigenesis in Compound Mutant Mice of both Dpc4(Smad4) and Apc Genes , 1998, Cell.