An integrative MEG–fMRI study of the primary somatosensory cortex using cross-modal correspondence analysis

We develop a novel approach of cross-modal correspondence analysis (CMCA) to address whether brain activities observed in magnetoencephalography (MEG) and functional magnetic resonance imaging (fMRI) represent a common neuronal subpopulation, and if so, which frequency band obtained by MEG best fits the common brain areas. Fourteen adults were investigated by whole-head MEG using a single equivalent current dipole (ECD) and synthetic aperture magnetometry (SAM) approaches and by fMRI at 1.5 T using linear time-invariant modeling to generate statistical maps. The same somatosensory stimulus sequences consisting of tactile impulses to the right sided: digit 1, digit 4 and lower lip were used in both neuroimaging modalities. To evaluate the reproducibility of MEG and fMRI results, one subject was measured repeatedly. Despite different MEG dipole locations and locations of maximum activation in SAM and fMRI, CMCA revealed a common subpopulation of the primary somatosensory cortex, which displays a clear homuncular organization. MEG activity in the frequency range between 30 and 60 Hz, followed by the ranges of 20-30 and 60-100 Hz, explained best the defined subrepresentation given by both MEG and fMRI. These findings have important implications for improving and understanding of the biophysics underlying both neuroimaging techniques, and for determining the best strategy to combine MEG and fMRI data to study the spatiotemporal nature of brain activity.

[1]  R A Andersen,et al.  Functional magnetic resonance imaging in macaque cortex , 1998, Neuroreport.

[2]  R. Hari,et al.  Auditory evoked transient and sustained magnetic fields of the human brain localization of neural generators , 1980, Experimental Brain Research.

[3]  M Hämäläinen,et al.  Somatosensory evoked cerebral magnetic fields from SI and SII in man. , 1984, Electroencephalography and clinical neurophysiology.

[4]  J. Karhu,et al.  Somatosensory evoked magnetic fields arising from sources in the human cerebellum , 1997, Brain Research.

[5]  M. Young,et al.  Neuronal population activity and functional imaging , 1999, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[6]  Matthew K. Belmonte,et al.  Permutation testing made practical for functional magnetic resonance image analysis , 2001, IEEE Transactions on Medical Imaging.

[7]  Richard M. Leahy,et al.  MEG-based imaging of focal neuronal current sources , 1995, 1995 IEEE Nuclear Science Symposium and Medical Imaging Conference Record.

[8]  J. Haueisen,et al.  Multiplicity in the high-frequency signals during the short-latency somatosensory evoked cortical activity in humans , 2001, Clinical Neurophysiology.

[9]  H Burton,et al.  Attending to and Remembering Tactile Stimuli: A Review of Brain Imaging Data and Single-Neuron Responses , 2000, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[10]  Christo Pantev,et al.  Reproducibility and Validity of Neuromagnetic Source Localization Using A Large Array Biomagnetometer , 1991 .

[11]  A Villringer,et al.  fMRI assessment of somatotopy in human Brodmann area 3b by electrical finger stimulation , 1998, Neuroreport.

[12]  Antti Korvenoja,et al.  Activation of ipsilateral primary sensorimotor cortex by median nerve stimulation , 1995, Neuroreport.

[13]  K. Matsuura,et al.  A robust reconstruction of sparse biomagnetic sources , 1997, IEEE Transactions on Biomedical Engineering.

[14]  T Yousry,et al.  [The motor hand area. Noninvasive detection with functional MRI and surgical validation with cortical stimulation]. , 1995, Der Radiologe.

[15]  F E Bloom,et al.  Intrasubject reliability and validity of somatosensory source localization using a large array biomagnetometer. , 1994, Electroencephalography and clinical neurophysiology.

[16]  O Salonen,et al.  Three‐dimensional integration of brain anatomy and function to facilitate intraoperative navigation around the sensorimotor strip , 2001, Human brain mapping.

[17]  K Scheffler,et al.  Motor, somatosensory and auditory cortex localization by fMRI and MEG , 1998, Neuroreport.

[18]  C D Tesche MEG imaging of neuronal population dynamics in the human thalamus. , 1996, Electroencephalography and clinical neurophysiology. Supplement.

[19]  Ryusuke Kakigi,et al.  The somatosensory evoked magnetic fields , 2000, Progress in Neurobiology.

[20]  R. Ilmoniemi,et al.  Magnetoencephalography-theory, instrumentation, and applications to noninvasive studies of the working human brain , 1993 .

[21]  R. Buxton,et al.  Dynamics of blood flow and oxygenation changes during brain activation: The balloon model , 1998, Magnetic resonance in medicine.

[22]  Se Robinson,et al.  Functional neuroimaging by Synthetic Aperture Magnetometry (SAM) , 1999 .

[23]  L. Krubitzer,et al.  Evidence for interhemispheric processing of inputs from the hands in human S2 and PV. , 2001, Journal of neurophysiology.

[24]  T. Albright,et al.  fMRI of Monkey Visual Cortex , 1998, Neuron.

[25]  I. Berry,et al.  Methodological and Technical Issues for Integrating Functional Magnetic Resonance Imaging Data in a Neuronavigational System , 2001, Neurosurgery.

[26]  R. C. Oldfield The assessment and analysis of handedness: the Edinburgh inventory. , 1971, Neuropsychologia.

[27]  Christopher Nimsky,et al.  Correlation of Sensorimotor Activation with Functional Magnetic Resonance Imaging and Magnetoencephalography in Presurgical Functional Imaging: A Spatial Analysis , 2001, NeuroImage.

[28]  Y X Wang,et al.  Leu‐enkephalin induced by IL‐2 administration mediates analgesic effect of IL‐2 , 2000, Neuroreport.

[29]  S. Ogawa,et al.  Magnetic resonance imaging of blood vessels at high fields: In vivo and in vitro measurements and image simulation , 1990, Magnetic resonance in medicine.

[30]  Riitta Hari,et al.  Activation of human mesial cortex during somatosensory target detection task , 1996, Brain Research.

[31]  B R Rosen,et al.  Functional magnetic resonance imaging and transcranial magnetic stimulation , 1997, Neurology.

[32]  R. Cox,et al.  Functional MR activation correlated with intraoperative cortical mapping. , 1997, AJNR. American journal of neuroradiology.

[33]  M. Fuchs,et al.  Linear and nonlinear current density reconstructions. , 1999, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[34]  R Llinás,et al.  Anatomical localization revealed by MEG recordings of the human somatosensory system. , 1991, Electroencephalography and clinical neurophysiology.

[35]  T Imada,et al.  High-frequency magnetic signals in the human somatosensory cortex. , 1996, Electroencephalography and clinical neurophysiology. Supplement.

[36]  W. Drongelen,et al.  Localization of brain electrical activity via linearly constrained minimum variance spatial filtering , 1997, IEEE Transactions on Biomedical Engineering.

[37]  T. Yoshimoto,et al.  Accuracy and Limitation of Functional Magnetic Resonance Imaging for Identification of the Central Sulcus: Comparison with Magnetoencephalography in Patients with Brain Tumors , 1999, NeuroImage.

[38]  David C. Alsop,et al.  The Sensory Somatotopic Map of the Human Hand Demonstrated at 4 Tesla , 1999, NeuroImage.

[39]  C C Wood,et al.  Human cortical potentials evoked by stimulation of the median nerve. II. Cytoarchitectonic areas generating long-latency activity. , 1989, Journal of neurophysiology.

[40]  L. Krubitzer,et al.  Somatotopic organization of cortical fields in the lateral sulcus of Homo sapiens: Evidence for SII and PV , 2000, The Journal of comparative neurology.

[41]  N. Harel,et al.  Blood capillary distribution correlates with hemodynamic-based functional imaging in cerebral cortex. , 2002, Cerebral cortex.

[42]  C. L. Kwan,et al.  Functional MRI study of thalamic and cortical activations evoked by cutaneous heat, cold, and tactile stimuli. , 1998, Journal of neurophysiology.

[43]  P A Turski,et al.  Multiple tactile maps in the human cerebellum , 2001, Neuroreport.

[44]  N. Logothetis,et al.  Neurophysiological investigation of the basis of the fMRI signal , 2001, Nature.

[45]  T. Hammeke,et al.  Functional magnetic resonance imaging mapping of the motor cortex in patients with cerebral tumors. , 1996, Neurosurgery.

[46]  A M Dale,et al.  Event-related functional MRI: past, present, and future. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[47]  H. Rowley,et al.  Mapping of the sensorimotor cortex: functional MR and magnetic source imaging. , 1997, AJNR. American journal of neuroradiology.

[48]  Alfons Schnitzler,et al.  Rapid mapping of finger representations in human primary somatosensory cortex applying neuromagnetic steady-state responses , 2002, Neuroreport.

[49]  J. Kucharczyk,et al.  Applications of magnetic source imaging to presurgical brain mapping. , 1995, Neuroimaging clinics of North America.

[50]  M Scherg,et al.  A new interpretation of the generators of BAEP waves I-V: results of a spatio-temporal dipole model. , 1985, Electroencephalography and clinical neurophysiology.

[51]  J.C. Mosher,et al.  Recursive MUSIC: A framework for EEG and MEG source localization , 1998, IEEE Transactions on Biomedical Engineering.

[52]  R D Bucholz,et al.  Presurgical localization of functional cortex using magnetic source imaging. , 1995, Journal of neurosurgery.

[53]  Juha Virtanen,et al.  Activation of multiple cortical areas in response to somatosensory stimulation: Combined magnetoencephalographic and functional magnetic resonance imaging , 1999, Human brain mapping.

[54]  Karl J. Friston,et al.  Quantitative Comparison of Functional Magnetic Resonance Imaging with Positron Emission Tomography Using a Force-Related Paradigm , 1996, NeuroImage.

[55]  Bernard Widrow,et al.  Adaptive Signal Processing , 1985 .

[56]  N. Barbaro,et al.  Correlation of functional magnetic source imaging with intraoperative cortical stimulation in neurosurgical patients. , 1995, Journal of image guided surgery.

[57]  Riitta Hari,et al.  Sustained Activation of the Human SII Cortices by Stimulus Trains , 2001, NeuroImage.

[58]  S. Goldring,et al.  Comparative study of sensory input to motor cortex in animals and man. , 1970, Electroencephalography and clinical neurophysiology.

[59]  R. Hari,et al.  Functional Organization of the Human First and Second Somatosensory Cortices: a Neuromagnetic Study , 1993, The European journal of neuroscience.

[60]  R. Hari,et al.  Activation of the human posterior parietal cortex by median nerve stimulation , 2004, Experimental Brain Research.

[61]  A Villringer,et al.  fMRI shows multiple somatotopic digit representations in human primary somatosensory cortex , 2000, Neuroreport.

[62]  D. Tank,et al.  Brain magnetic resonance imaging with contrast dependent on blood oxygenation. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[63]  M. Scherg,et al.  Models of brain sources , 2005, Brain Topography.

[64]  E. Moser,et al.  Magnetoencephalography May Help to Improve Functional MRI Brain Mapping , 1997, The European journal of neuroscience.

[65]  A M Dale,et al.  Segregation of somatosensory activation in the human rolandic cortex using fMRI. , 2000, Journal of neurophysiology.

[66]  S. Ogawa,et al.  Oxygenation‐sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields , 1990, Magnetic resonance in medicine.

[67]  E. Somersalo,et al.  Visualization of Magnetoencephalographic Data Using Minimum Current Estimates , 1999, NeuroImage.

[68]  Ravi S. Menon,et al.  Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[69]  S. Tobimatsu,et al.  Functional mapping of the sensorimotor cortex: combined use of magnetoencephalography, functional MRI, and motor evoked potentials , 1995, Neuroradiology.

[70]  Klaus Sartor,et al.  Somatotopic mapping of the human primary somatosensory cortex by fully automated tactile stimulation using functional magnetic resonance imaging , 1999, Neuroscience Letters.

[71]  Karl J. Friston,et al.  Nonlinear Responses in fMRI: The Balloon Model, Volterra Kernels, and Other Hemodynamics , 2000, NeuroImage.

[72]  T Imada,et al.  Somatic evoked high-frequency magnetic oscillations reflect activity of inhibitory interneurons in the human somatosensory cortex. , 1996, Electroencephalography and clinical neurophysiology.

[73]  H. Helmholtz Ueber einige Gesetze der Vertheilung elektrischer Ströme in körperlichen Leitern mit Anwendung auf die thierisch‐elektrischen Versuche , 1853 .

[74]  T. Allison,et al.  Functional magnetic resonance imaging of sensory and motor cortex: comparison with electrophysiological localization. , 1995, Journal of neurosurgery.

[75]  G. Krüger,et al.  Temporal and spatial MRI responses to subsecond visual activation. , 1999, Magnetic resonance imaging.

[76]  R. Ilmoniemi,et al.  Interpreting magnetic fields of the brain: minimum norm estimates , 2006, Medical and Biological Engineering and Computing.

[77]  G Curio,et al.  Localization of evoked neuromagnetic 600 Hz activity in the cerebral somatosensory system. , 1994, Electroencephalography and clinical neurophysiology.

[78]  E C Wong,et al.  Processing strategies for time‐course data sets in functional mri of the human brain , 1993, Magnetic resonance in medicine.

[79]  G. McCarthy,et al.  Dynamic mapping of the human visual cortex by high-speed magnetic resonance imaging. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[80]  N. Logothetis,et al.  Functional imaging of the monkey brain , 1999, Nature Neuroscience.

[81]  H Burton,et al.  Functional MRI in human somatosensory cortex activated by touching textured surfaces , 1996, Journal of magnetic resonance imaging : JMRI.

[82]  L. Narici,et al.  Evidence for a 7- to 9-Hz “Sigma” Rhythm in the Human SII Cortex , 2001, NeuroImage.

[83]  Toshiki Yoshimine,et al.  Frequency-dependent spatial distribution of human somatosensory evoked neuromagnetic fields , 2002, Neuroscience Letters.

[84]  P Berg,et al.  Multiple source analysis of interictal spikes: goals, requirements, and clinical value. , 1999, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[85]  C. Jack,et al.  Sensory motor cortex: correlation of presurgical mapping with functional MR imaging and invasive cortical mapping. , 1994, Radiology.

[86]  N Birbaumer,et al.  Multiple frequency steady-state evoked magnetic field mapping of digit representation in primary somatosensory cortex. , 2001, Somatosensory & motor research.

[87]  T. Carpenter,et al.  Linear coupling between functional magnetic resonance imaging and evoked potential amplitude in human somatosensory cortex , 2000, Neuroscience.

[88]  R. Hari,et al.  Magnetoencephalography in the study of human somatosensory cortical processing. , 1999, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[89]  J. Pardo,et al.  PET study of the localization and laterality of lingual somatosensory processing in humans , 1997, Neuroscience Letters.

[90]  A. Nakamura,et al.  Somatosensory Homunculus as Drawn by MEG , 1998, NeuroImage.

[91]  A M Dale,et al.  Randomized event‐related experimental designs allow for extremely rapid presentation rates using functional MRI , 1998, Neuroreport.

[92]  Ravi S. Menon,et al.  Mental chronometry using latency-resolved functional MRI. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[93]  G. Glover,et al.  Self‐navigated spiral fMRI: Interleaved versus single‐shot , 1998, Magnetic resonance in medicine.

[94]  Karl J. Friston,et al.  Statistical parametric maps in functional imaging: A general linear approach , 1994 .

[95]  U Salvolini,et al.  Localization of the first and second somatosensory areas in the human cerebral cortex with functional MR imaging. , 1999, AJNR. American journal of neuroradiology.

[96]  E A Disbrow,et al.  Functional MRI at 1.5 tesla: a comparison of the blood oxygenation level-dependent signal and electrophysiology. , 2000, Proceedings of the National Academy of Sciences of the United States of America.