Joint-Saliency Structure Adaptive Kernel Regression with Adaptive-Scale Kernels for Deformable Registration of Challenging Images

This paper proposes a locally adaptive kernel regression with adaptive-scale kernels for deformable image registration with outliers (i.e., missing correspondences and large local deformations). The adaptive kernel regression locally constructs dense deformation fields from the weighted contributions of each pixel’s surrounding discrete displacement fields in a moving anisotropic kernel by exploiting the contextual deformations of the corresponding saliency structures in the two images. Specifically, we first propose an effective superpixel-based structure scale estimator to estimate the boundary-aware structure scale of each reference structure. We further propose an edge-aware mismatch scale measuring the mismatch degree of the edge structures to be matched in the images. By combining the boundary-aware structure scale with the edge-aware mismatch scale of the underlying saliency structures to be matched, we define edge-aware adaptive-scale kernels for the locally adaptive kernel regression to efficiently construct deformations for deformable registration with outliers. The experiments show that the proposed method achieves not only state-of-the-art matching accuracy for normal corresponding structures but also the best matching efficiency for outlier structures in deformable image registration.

[1]  Lisa Tang,et al.  Reliability-Driven, Spatially-Adaptive Regularization for Deformable Registration , 2010, WBIR.

[2]  M. Woolrich,et al.  Probabilistic non-linear registration with spatially adaptive regularisation , 2015, Medical Image Anal..

[3]  Oleg Lobachev,et al.  Feature‐based multi‐resolution registration of immunostained serial sections , 2017, Medical Image Anal..

[4]  Danielle F. Pace,et al.  A Locally Adaptive Regularization Based on Anisotropic Diffusion for Deformable Image Registration of Sliding Organs , 2013, IEEE Transactions on Medical Imaging.

[5]  Andrew P. Witkin,et al.  Scale-space filtering: A new approach to multi-scale description , 1984, ICASSP.

[6]  Cordelia Schmid,et al.  DeepMatching: Hierarchical Deformable Dense Matching , 2015, International Journal of Computer Vision.

[7]  Nikos Paragios,et al.  Deformable Medical Image Registration: A Survey , 2013, IEEE Transactions on Medical Imaging.

[8]  Zhenyu Tang,et al.  Groupwise registration of MR brain images with tumors. , 2017, Physics in medicine and biology.

[9]  Jayaram K. Udupa,et al.  Image filtering via generalized scale , 2008, Medical Image Anal..

[10]  Christos Davatzikos,et al.  Comparative Evaluation of Registration Algorithms in Different Brain Databases With Varying Difficulty: Results and Insights , 2014, IEEE Transactions on Medical Imaging.

[11]  Steven W. Zucker,et al.  Local Scale Control for Edge Detection and Blur Estimation , 1996, ECCV.

[12]  Binjie Qin,et al.  Nonrigid Registration of Brain Tumor Resection MR Images Based on Joint Saliency Map and Keypoint Clustering , 2009, Sensors.

[13]  J. Koenderink The structure of images , 2004, Biological Cybernetics.

[14]  Dong Liu,et al.  Medical image classification using spatial adjacent histogram based on adaptive local binary patterns , 2016, Comput. Biol. Medicine.

[15]  Min Zhang,et al.  Small Blob Identification in Medical Images Using Regional Features From Optimum Scale , 2015, IEEE Transactions on Biomedical Engineering.

[16]  Alain Trouvé,et al.  Computing Large Deformation Metric Mappings via Geodesic Flows of Diffeomorphisms , 2005, International Journal of Computer Vision.

[17]  Anja Schindler,et al.  A Review and Comparison of Bandwidth Selection Methods for Kernel Regression , 2014 .

[18]  Andreas K. Maier,et al.  Intraoperative Imaging Modalities and Compensation for Brain Shift in Tumor Resection Surgery , 2017, Int. J. Biomed. Imaging.

[19]  Juan Ruiz-Alzola,et al.  Nonrigid Registration Using Regularized Matching Weighted by Local Structure , 2002, MICCAI.

[20]  Luis Enrique Sucar,et al.  Probabilistic estimation of local scale , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[21]  Qiang Chen,et al.  Adaptive scale fuzzy local Gaussian mixture model for brain MR image segmentation , 2014, Neurocomputing.

[22]  Ce Liu,et al.  Deformable Spatial Pyramid Matching for Fast Dense Correspondences , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[23]  Zongben Xu,et al.  Scale selection for anisotropic diffusion filter by Markov random field model , 2010, Pattern Recognit..

[24]  Binjie Qin,et al.  Registration of Images With Outliers Using Joint Saliency Map , 2010, IEEE Signal Processing Letters.

[25]  Cordelia Schmid,et al.  EpicFlow: Edge-preserving interpolation of correspondences for optical flow , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[26]  Nikos Paragios,et al.  DRAMMS: Deformable Registration via Attribute Matching and Mutual-Saliency Weighting , 2009, IPMI.

[27]  Xosé R. Fernández-Vidal,et al.  The Selection of Natural Scales in 2D Images Using Adaptive Gabor Filtering , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[28]  Marc Niethammer,et al.  Quicksilver: Fast predictive image registration – A deep learning approach , 2017, NeuroImage.

[29]  Dinggang Shen,et al.  Feature‐based groupwise registration by hierarchical anatomical correspondence detection , 2012, Human brain mapping.

[30]  Brian B. Avants,et al.  Evaluation of Registration Methods on Thoracic CT: The EMPIRE10 Challenge , 2011, IEEE Transactions on Medical Imaging.

[31]  Binjie Qin,et al.  Structure matching driven by joint-saliency-structure adaptive kernel regression , 2016, Appl. Soft Comput..

[32]  Edward H. Adelson,et al.  The Laplacian Pyramid as a Compact Image Code , 1983, IEEE Trans. Commun..

[33]  Benjamin Berkels,et al.  An image registration framework for sliding motion with piecewise smooth deformations , 2015, SSVM.

[34]  Pascal Fua,et al.  SLIC Superpixels Compared to State-of-the-Art Superpixel Methods , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[35]  Arno Klein,et al.  A reproducible evaluation of ANTs similarity metric performance in brain image registration , 2011, NeuroImage.

[36]  Mohamed A. Deriche,et al.  Scale-Space Properties of the Multiscale Morphological Dilation-Erosion , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[37]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[38]  David A. Clausi,et al.  Structure-Guided Statistical Textural Distinctiveness for Salient Region Detection in Natural Images , 2015, IEEE Trans. Image Process..

[39]  Jianhua Yao,et al.  Computer-aided detection of renal calculi from noncontrast CT images using TV-flow and MSER features. , 2014, Medical physics.

[40]  M. Staring,et al.  Nonrigid registration with tissue-dependent filtering of the deformation field , 2007, Physics in medicine and biology.

[41]  Mads Nielsen,et al.  Kernel Bundle Diffeomorphic Image Registration Using Stationary Velocity Fields and Wendland Basis Functions , 2016, IEEE Transactions on Medical Imaging.

[42]  Rong Li,et al.  Extracting contrast-filled vessels in X-ray angiography by graduated RPCA with motion coherency constraint , 2017, Pattern Recognit..

[43]  Jacques-Olivier Lachaud,et al.  Meaningful Scales Detection along Digital Contours for Unsupervised Local Noise Estimation , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[44]  J. Rissanen,et al.  Modeling By Shortest Data Description* , 1978, Autom..

[45]  T. Lindeberg,et al.  Scale-Space Theory : A Basic Tool for Analysing Structures at Different Scales , 1994 .

[46]  Sha Chang,et al.  Large deformation 3 D image registration in image-guided radiation therapy , 2022 .

[47]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[48]  Jitendra Malik,et al.  Large Displacement Optical Flow: Descriptor Matching in Variational Motion Estimation , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[49]  Marc Niethammer,et al.  Low-Rank Atlas Image Analyses in the Presence of Pathologies , 2015, IEEE Transactions on Medical Imaging.

[50]  Danielle F. Pace,et al.  Geometric Metamorphosis , 2011, MICCAI.

[51]  M. Sdika,et al.  Nonrigid registration of multiple sclerosis brain images using lesion inpainting for morphometry or lesion mapping , 2009, Human brain mapping.

[52]  Michael Brady,et al.  Deformable image registration by combining uncertainty estimates from supervoxel belief propagation , 2016, Medical Image Anal..

[53]  Edoardo Ardizzone,et al.  Three-dimensional Fuzzy Kernel Regression framework for registration of medical volume data , 2013, Pattern Recognit..

[54]  Tal Hassner,et al.  Dense Correspondences across Scenes and Scales , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[55]  Laurent Risser,et al.  An implicit sliding-motion preserving regularisation via bilateral filtering for deformable image registration , 2014, Medical Image Anal..

[56]  William M. Wells,et al.  Bayesian characterization of uncertainty in intra-subject non-rigid registration , 2013, Medical Image Anal..

[57]  Thomas Brox,et al.  A TV flow based local scale estimate and its application to texture discrimination , 2006, J. Vis. Commun. Image Represent..

[58]  Josep Marco-Pallarés,et al.  Analysis of automated methods for spatial normalization of lesioned brains , 2012, NeuroImage.

[59]  Patrick Bouthemy,et al.  Adaptive Spot Detection With Optimal Scale Selection in Fluorescence Microscopy Images , 2015, IEEE Transactions on Image Processing.

[60]  Nicholas Ayache,et al.  Grid powered nonlinear image registration with locally adaptive regularization , 2004, Medical Image Anal..

[61]  Chris Rorden,et al.  Spatial Normalization of Brain Images with Focal Lesions Using Cost Function Masking , 2001, NeuroImage.

[62]  R. Castillo,et al.  A framework for evaluation of deformable image registration spatial accuracy using large landmark point sets , 2009, Physics in medicine and biology.

[63]  Simon R. Arridge,et al.  A Nonrigid Registration Framework Using Spatially Encoded Mutual Information and Free-Form Deformations , 2011, IEEE Transactions on Medical Imaging.

[64]  Katsushi Ikeuchi Computer Vision: A Reference Guide , 2014 .

[65]  Jaakko Astola,et al.  From Local Kernel to Nonlocal Multiple-Model Image Denoising , 2009, International Journal of Computer Vision.

[66]  Daniel Rueckert,et al.  Construction of a consistent high-definition spatio-temporal atlas of the developing brain using adaptive kernel regression , 2012, NeuroImage.

[67]  Shihong Du,et al.  Learning selfhood scales for urban land cover mapping with very-high-resolution satellite images , 2016 .

[68]  Luc Van Gool,et al.  Sparse Flow: Sparse Matching for Small to Large Displacement Optical Flow , 2015, 2015 IEEE Winter Conference on Applications of Computer Vision.

[69]  Min Zhang,et al.  Scale parameter selection by spatial statistics for GeOBIA: Using mean-shift based multi-scale segmentation as an example , 2015 .

[70]  Stefano Soatto,et al.  The scale of a texture and its application to segmentation , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[71]  Patrick Bouthemy,et al.  Optical flow modeling and computation: A survey , 2015, Comput. Vis. Image Underst..