The Geometric Design and Fabrication of Actuating Cellular Structures

Dr. L. Guiducci, Prof. P. Fratzl, Dr. J. W. C. Dunlop Department of Biomaterials Max Planck Institute of Colloids and Interfaces Potsdam 14476 , Germany E-mail: lorenzo.guiducci@mpikg.mpg.de; john.dunlop@mpikg.mpg.de Dr. J. C. Weaver Wyss Institute for Biologically Inspired Engineering Harvard University Cambridge , MA 02138 , USA Prof. Y. J. M Bréchet CEA – Atomic Energy and Alternative Energies Commission Paris and Gif-sur-Yvette 91191 , France

[1]  Peter Fratzl,et al.  Pressurized honeycombs as soft-actuators: a theoretical study , 2014, Journal of The Royal Society Interface.

[2]  C. Neinhuis,et al.  Hydro-actuation of ice plant seed capsules powered by water uptake , 2014 .

[3]  B. Mazzolai,et al.  Another Lesson from Plants: The Forward Osmosis-Based Actuator , 2014, PloS one.

[4]  Qiang Zhao,et al.  An instant multi-responsive porous polymer actuator driven by solvent molecule sorption , 2014, Nature Communications.

[5]  K. Bertoldi,et al.  Complex ordered patterns in mechanical instability induced geometrically frustrated triangular cellular structures. , 2014, Physical review letters.

[6]  André R Studart,et al.  Bioinspired materials that self-shape through programmed microstructures. , 2014, Soft matter.

[7]  K. Bertoldi,et al.  A Bioinspired Soft Actuated Material , 2014, Advanced materials.

[8]  E. Terentjev,et al.  Swelling and de-swelling of gels under external elastic deformation , 2013 .

[9]  P. Fratzl,et al.  Physicochemical basis for water-actuated movement and stress generation in nonliving plant tissues. , 2013, Physical review letters.

[10]  Qi Ge,et al.  Active materials by four-dimension printing , 2013 .

[11]  Jongmin Shim,et al.  3D Soft Metamaterials with Negative Poisson's Ratio , 2013, Advanced materials.

[12]  Katia Bertoldi,et al.  Harnessing instabilities for design of soft reconfigurable auxetic/chiral materials , 2013 .

[13]  F Tramacere,et al.  Osmotic actuation modelling for innovative biorobotic solutions inspired by the plant kingdom , 2013, Bioinspiration & biomimetics.

[14]  Jamie L. Branch,et al.  Robotic Tentacles with Three‐Dimensional Mobility Based on Flexible Elastomers , 2013, Advanced materials.

[15]  K. Mecke,et al.  Finite auxetic deformations of plane tessellations , 2013, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[16]  Kevin W Eliceiri,et al.  NIH Image to ImageJ: 25 years of image analysis , 2012, Nature Methods.

[17]  B Mazzolai,et al.  Soft-robotic arm inspired by the octopus: II. From artificial requirements to innovative technological solutions , 2012, Bioinspiration & biomimetics.

[18]  B Mazzolai,et al.  Soft robotic arm inspired by the octopus: I. From biological functions to artificial requirements , 2012, Bioinspiration & biomimetics.

[19]  M Pagitz,et al.  Pressure-actuated cellular structures , 2012, Bioinspiration & biomimetics.

[20]  Filip Ilievski,et al.  Multigait soft robot , 2011, Proceedings of the National Academy of Sciences.

[21]  R. Kupferman,et al.  Geometry and Mechanics in the Opening of Chiral Seed Pods , 2011, Science.

[22]  Thomas Speck,et al.  Plant Stems: Functional Design and Mechanics , 2011 .

[23]  Michael Stingl,et al.  Finding Auxetic Frameworks in Periodic Tessellations , 2011, Advanced materials.

[24]  Peter Fratzl,et al.  Origami-like unfolding of hydro-actuated ice plant seed capsules. , 2011, Nature communications.

[25]  C. Neinhuis,et al.  G-fibres in storage roots of Trifolium pratense (Fabaceae): tensile stress generators for contraction. , 2010, The Plant journal : for cell and molecular biology.

[26]  F. Barth,et al.  Biomaterial systems for mechanosensing and actuation , 2009, Nature.

[27]  L. Mahadevan,et al.  Hygromorphs: from pine cones to biomimetic bilayers , 2009, Journal of The Royal Society Interface.

[28]  I. Burgert,et al.  Actuation systems in plants as prototypes for bioinspired devices , 2009, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[29]  George Jeronimidis,et al.  Stress generation in the tension wood of poplar is based on the lateral swelling power of the G-layer. , 2008, The Plant journal : for cell and molecular biology.

[30]  Peter Fratzl,et al.  Cellulose fibrils direct plant organ movements. , 2008, Faraday discussions.

[31]  Peter Fratzl,et al.  Tensile and compressive stresses in tracheids are induced by swelling based on geometrical constraints of the wood cell , 2007, Planta.

[32]  Iosif Pinelis,et al.  Cyclic polygons with given edge lengths: Existence and uniqueness , 2005 .

[33]  Jozef Keckes,et al.  Cell-wall recovery after irreversible deformation of wood , 2003, Nature materials.

[34]  M. Ashby,et al.  Designing hybrid materials , 2003 .

[35]  S. Gehrke,et al.  Rate-Limiting Steps for Solvent Sorption and Desorption by Microporous Stimuli-Sensitive Absorbent Gels , 1994 .

[36]  Doris Schattschneider,et al.  Will It Tile? Try the Conway Criterion! , 1980 .

[37]  Peter Fratzl,et al.  Multilevel architectures in natural materials , 2013 .

[38]  A. L. Loeb Tessellations and Symmetry , 1993 .