Large eddy simulations of compressible turbulent flows
暂无分享,去创建一个
An evaluation of existing models for Large Eddy Simulations (LES) of incompressible turbulent flows has been completed. LES is a computation in which the large, energy-carrying structures to momentum and energy transfer is computed exactly, and only the effect of the smallest scales of turbulence is modeled. That is, the large eddies are computed and the smaller eddies are modeled. The dynamics of the largest eddies are believed to account for most of sound generation and transport properties in a turbulent flow. LES analysis is based on an observation that pressure, velocity, temperature, and other variables are the sum of their large-scale and small-scale parts. For instance, u(i) (velocity) can be written as the sum of bar-u(i) and u(i)-prime, where bar-u(i) is the large-scale and u(i)-prime is the subgrid-scale (SGS). The governing equations for large eddies in compressible flows are obtained after filtering the continuity, momentum, and energy equations, and recasting in terms of Favre averages. The filtering operation maintains only large scales. The effects of the small-scales are present in the governing equations through the SGS stress tensor tau(ij) and SGS heat flux q(i). The mathematical formulation of the Favre-averaged equations of motion for LES is complete.