Raw oil palm frond leaves as cost-effective substrate for cellulase and xylanase productions by Trichoderma asperellum UC1 under solid-state fermentation.

[1]  E. Koupaie,et al.  Enzymatic pretreatment of lignocellulosic biomass for enhanced biomethane production-A review. , 2019, Journal of environmental management.

[2]  R. A. Wahab,et al.  Oil Palm (Elaeis guineensis) Biomass in Malaysia: The Present and Future Prospects , 2019 .

[3]  D. A. Bocchini,et al.  Catalytic properties of cellulases and hemicellulases produced by Lichtheimia ramosa: Potential for sugarcane bagasse saccharification , 2018, Industrial Crops and Products.

[4]  D. A. Bocchini,et al.  Cellulases and xylanases production by endophytic fungi by solid state fermentation using lignocellulosic substrates and enzymatic saccharification of pretreated sugarcane bagasse , 2018, Industrial Crops and Products.

[5]  Amit Kumar,et al.  Exploitation of Parthenium hysterophorous biomass as low-cost substrate for cellulase and xylanase production under solid-state fermentation using Talaromyces stipitatus MTCC 12687 , 2018, Journal of Radiation Research and Applied Sciences.

[6]  Mengxing Li,et al.  High-activity production of xylanase by Pichia stipitis: Purification, characterization, kinetic evaluation and xylooligosaccharides production. , 2018, International journal of biological macromolecules.

[7]  A. Lateef,et al.  Valorization of Corn-Cob by Fungal Isolates for Production of Xylanase in Submerged and Solid State Fermentation Media and Potential Biotechnological Applications , 2018 .

[8]  A. Yahya,et al.  Solid-state fermentation of oil palm frond petiole for lignin peroxidase and xylanase-rich cocktail production , 2018, 3 Biotech.

[9]  Sib Krishna Ghoshal,et al.  Accurate evaluation of sugar contents in stingless bee (Heterotrigona itama) honey using a swift scheme. , 2018 .

[10]  Manasi Ghosh,et al.  Characterization of cellulase from Aspergillus tubingensis NKBP-55 for generation of fermentable sugars from agricultural residues. , 2018, Bioresource technology.

[11]  M. Ganash,et al.  Molecular Characterization of Trichoderma asperellum and Lignocellulolytic Activity on Barley Straw Treated with Silver Nanoparticles , 2018 .

[12]  J. Bohacz Microbial strategies and biochemical activity during lignocellulosic waste composting in relation to the occurring biothermal phases. , 2018, Journal of environmental management.

[13]  Xiangqun Xu,et al.  Solid state bioconversion of lignocellulosic residues by Inonotus obliquus for production of cellulolytic enzymes and saccharification. , 2018, Bioresource technology.

[14]  Manisha,et al.  Technological advances and applications of hydrolytic enzymes for valorization of lignocellulosic biomass. , 2017, Bioresource technology.

[15]  R. A. Wahab,et al.  Structure and properties of oil palm-based nanocellulose reinforced chitosan nanocomposite for efficient synthesis of butyl butyrate. , 2017, Carbohydrate polymers.

[16]  Rajeev K Sukumaran,et al.  Cellulase production through solid-state tray fermentation, and its use for bioethanol from sorghum stover. , 2017, Bioresource technology.

[17]  W. Nadiah,et al.  Characterization of novel Trichoderma hemicellulase and its use to enhance downstream processing of lignocellulosic biomass to simple fermentable sugars , 2017 .

[18]  Taisuke Watanabe,et al.  Production of rice straw hydrolysis enzymes by the fungi Trichoderma reesei and Humicola insolens using rice straw as a carbon source. , 2017, Bioresource technology.

[19]  U. R. Ezeilo,et al.  Enzymatic breakdown of lignocellulosic biomass: the role of glycosyl hydrolases and lytic polysaccharide monooxygenases , 2017 .

[20]  R. Ravindran,et al.  Microbial Enzyme Production Using Lignocellulosic Food Industry Wastes as Feedstock: A Review , 2016, Bioengineering.

[21]  K. Ajijolakewu,et al.  Assessment of the Effect of Easily-metabolised Carbon Supplements on Xylanase Production by Newly Isolated Trichoderma asperellum USM SD4 Cultivated on Oil Palm Empty Fruit Bunches , 2016 .

[22]  R. S. Leite,et al.  Production and Catalytic Properties of Amylases from Lichtheimia ramosa and Thermoascus aurantiacus by Solid-State Fermentation , 2016, TheScientificWorldJournal.

[23]  M. A. Oke,et al.  Enhanced Endoglucanase Production by Bacillus aerius on Mixed Lignocellulosic Substrates , 2016 .

[24]  R. S. Leite,et al.  Production and characterization of β-glucosidase from Gongronella butleri by solid-state fermentation , 2016 .

[25]  Nattha Pensupa,et al.  Optimizing Cellulase Production from Municipal Solid Waste (MSW) using Solid State Fermentation (SSF) , 2016 .

[26]  A. Ariff,et al.  Production and characterisation of cellulase from solid state fermentation of rice straw by Trichoderma harzianum SNRS3 , 2016 .

[27]  M. Basaglia,et al.  Utilisation of wheat bran as a substrate for bioethanol production using recombinant cellulases and amylolytic yeast , 2015 .

[28]  R. S. Leite,et al.  Production of β-glucosidase on solid-state fermentation by Lichtheimia ramosa in agroindustrial residues: characterization and catalytic properties of the enzymatic extract. , 2015 .

[29]  J. Saini,et al.  Enhanced cellulase production by Penicillium oxalicum for bio-ethanol application. , 2015, Bioresource technology.

[30]  N. Trivedi,et al.  Solid state fermentation (SSF)-derived cellulase for saccharification of the green seaweed Ulva for bioethanol production , 2015 .

[31]  S. Boonlue,et al.  Purification and characterization of alkaline xylanase from Thermoascus aurantiacus var. levisporus KKU-PN-I2-1 cultivated by solid-state fermentation. , 2015 .

[32]  A. Yahya,et al.  Isolation, Screening, and Identification of Potential Cellulolytic and Xylanolytic Producers for Biodegradation of Untreated Oil Palm Trunk and Its Application in Saccharification of Lemongrass Leaves , 2015, Preparative biochemistry & biotechnology.

[33]  R. R. Maldonado,et al.  Elucidation of the effects of inoculum size and age on lipase production by Geotrichum candidum , 2015 .

[34]  Rekha Rawat,et al.  An acidothermophilic functionally active novel GH12 family endoglucanase from Aspergillus niger HO: purification, characterization and molecular interaction studies , 2014, Antonie van Leeuwenhoek.

[35]  Francisco Maugeri Filho,et al.  Determinación del efecto del tamaño y la edad del inóculo en la producción de lipasa por Geotrichum candidum , 2014 .

[36]  Sanjeev Raghuwanshi,et al.  Bioprocessing of enhanced cellulase production from a mutant of Trichoderma asperellum RCK2011 and its application in hydrolysis of cellulose , 2014 .

[37]  Ayesha Sadaf,et al.  Production of Sporotrichum thermophile xylanase by solid state fermentation utilizing deoiled Jatropha curcas seed cake and its application in xylooligosachharide synthesis. , 2014, Bioresource technology.

[38]  M. Viljoen-Bloom,et al.  Comparative secretome analysis of Trichoderma asperellum S4F8 and Trichoderma reesei Rut C30 during solid-state fermentation on sugarcane bagasse , 2013, Biotechnology for Biofuels.

[39]  Paul Illmer,et al.  Improvement of methane generation capacity by aerobic pre-treatment of organic waste with a cellulolytic Trichoderma viride culture. , 2013, Journal of environmental management.

[40]  G. Ngoh,et al.  Simultaneous production of cellulase and reducing sugar through modification of compositional and structural characteristic of sugarcane bagasse. , 2013, Enzyme and microbial technology.

[41]  S. K. Ang,et al.  Production of cellulases and xylanase by Aspergillus fumigatus SK1 using untreated oil palm trunk through solid state fermentation , 2013 .

[42]  T. Dutta,et al.  Novel xylanases from Simplicillium obclavatum MTCC 9604: comparative analysis of production, purification and characterization of enzyme from submerged and solid state fermentation , 2013, SpringerPlus.

[43]  J. A. Jorge,et al.  Optimization of β-Glucosidase, β-Xylosidase and Xylanase Production by Colletotrichum graminicola under Solid-State Fermentation and Application in Raw Sugarcane Trash Saccharification , 2013, International journal of molecular sciences.

[44]  Satinder Kaur Brar,et al.  Potential of apple pomace as a solid substrate for fungal cellulase and hemicellulase bioproduction through solid-state fermentation , 2012 .

[45]  I. Thakur,et al.  CHARACTERIZATION OF LACCASE ACTIVITY PRODUCED BY Cryptococcus albidus , 2012, Preparative biochemistry & biotechnology.

[46]  Ramesh Chander Kuhad,et al.  Optimization of cellulase production by a brown rot fungus Fomitopsis sp. RCK2010 under solid state fermentation. , 2011, Bioresource technology.

[47]  S. Sabiha-Hanim,et al.  Effect of autohydrolysis and enzymatic treatment on oil palm (Elaeis guineensis Jacq.) frond fibres for xylose and xylooligosaccharides production. , 2011, Bioresource technology.

[48]  Wenju Jiang,et al.  In-depth investigation of enzymatic hydrolysis of biomass wastes based on three major components: Cellulose, hemicellulose and lignin. , 2010, Bioresource technology.

[49]  F. Guan,et al.  Production and characterization of cellulolytic enzymes from the thermoacidophilic fungal Aspergillus terreus M11 under solid-state cultivation of corn stover. , 2008, Bioresource technology.

[50]  A. Meyer,et al.  Efficiency of New Fungal Cellulase Systems in Boosting Enzymatic Degradation of Barley Straw Lignocellulose , 2006, Biotechnology progress.

[51]  P. Gunasekaran,et al.  Optimization of medium composition for alkali-stable xylanase production by Aspergillus fischeri Fxn 1 in solid-state fermentation using central composite rotary design. , 2005, Bioresource technology.

[52]  T. K. Ghose,et al.  Measurement of hemicellulase activities: Part I Xylanases , 1987 .

[53]  T. K. Ghose Measurement of cellulase activities , 1987 .

[54]  W. Horwitz Official Methods of Analysis , 1980 .

[55]  M. Mandels,et al.  The Production of Cellulases , 1969 .

[56]  G. L. Miller,et al.  Measurement of carboxymethylcellulase activity , 1960 .

[57]  G. L. Miller Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar , 1959 .

[58]  O. H. Lowry,et al.  Protein measurement with the Folin phenol reagent. , 1951, The Journal of biological chemistry.