Quantum-accelerated constraint programming

Constraint programming (CP) is a paradigm used to model and solve constraint satisfaction and combinatorial optimization problems. In CP, problems are modeled with constraints that describe acceptable solutions and solved with backtracking tree search augmented with logical inference. In this paper, we show how quantum algorithms can accelerate CP, at both the levels of inference and search. Leveraging existing quantum algorithms, we introduce a quantum-accelerated filtering algorithm for the alldifferent global constraint and discuss its applicability to a broader family of global constraints with similar structure. We propose frameworks for the integration of quantum filtering algorithms within both classical and quantum backtracking search schemes, including a novel hybrid classical-quantum backtracking search method. This work suggests that CP is a promising candidate application for early fault-tolerant quantum computers and beyond.

[1]  Lov K. Grover A fast quantum mechanical algorithm for database search , 1996, STOC '96.

[2]  Laurent Perron,et al.  Operations Research and Constraint Programming at Google , 2011, CP.

[3]  Toby Walsh,et al.  Handbook of Constraint Programming , 2006, Handbook of Constraint Programming.

[4]  Peter J. Stuckey,et al.  MiniZinc: Towards a Standard CP Modelling Language , 2007, CP.

[5]  Nicolas Beldiceanu,et al.  Filtering Algorithms for the Same Constraint , 2004, CPAIOR.

[6]  Radoslaw Cymer,et al.  Gallai-Edmonds decomposition as a pruning technique , 2015, Central Eur. J. Oper. Res..

[7]  Ian P. Gent,et al.  Generalised arc consistency for the AllDifferent constraint: An empirical survey , 2008, Artif. Intell..

[8]  A. Bonato,et al.  Graphs and Hypergraphs , 2022 .

[9]  Seth Lloyd,et al.  Quantum random access memory. , 2007, Physical review letters.

[10]  Bryan O'Gorman,et al.  Quantum-Accelerated Global Constraint Filtering , 2020, CP.

[12]  A. Montanaro,et al.  Applying quantum algorithms to constraint satisfaction mbox {problems} , 2019 .

[13]  Ashley Montanaro,et al.  Quantum speedup of branch-and-bound algorithms , 2019, Physical Review Research.

[14]  Srinivasan Arunachalam,et al.  On the robustness of bucket brigade quantum RAM , 2015, TQC.

[15]  Fang He,et al.  A Hybrid Constraint Programming Approach for Nurse Rostering Problems , 2008, SGAI Conf..

[16]  Ashley Montanaro,et al.  Quantum walk speedup of backtracking algorithms , 2015, Theory Comput..

[17]  J. Edmonds Paths, Trees, and Flowers , 1965, Canadian Journal of Mathematics.

[18]  Ronald de Wolf,et al.  Quantum SDP-Solvers: Better Upper and Lower Bounds , 2017, 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS).

[19]  Louis-Martin Rousseau,et al.  Improved filtering for weighted circuit constraints , 2012, Constraints.

[20]  Ronald de Wolf,et al.  Quantum SDP-Solvers: Better Upper and Lower Bounds , 2017, 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS).

[21]  N. S. Mendelsohn,et al.  Coverings of Bipartite Graphs , 1958, Canadian Journal of Mathematics.

[22]  Willem Jan van Hoeve,et al.  The alldifferent Constraint: A Survey , 2001, ArXiv.

[23]  Ashley Montanaro,et al.  Applying quantum algorithms to constraint satisfaction problems , 2018, Quantum.

[24]  Josh Alman,et al.  A Refined Laser Method and Faster Matrix Multiplication , 2020, SODA.

[25]  Uppaluri S. R. Murty,et al.  Graph Theory with Applications , 1978 .

[26]  Aleksandrs Belovs,et al.  Quantum Walks and Electric Networks , 2013, 1302.3143.

[27]  Willem Jan van Hoeve,et al.  Global Constraints , 2006, Handbook of Constraint Programming.

[28]  Michele Mosca,et al.  Fault-Tolerant Resource Estimation of Quantum Random-Access Memories , 2019, IEEE Transactions on Quantum Engineering.

[29]  Xizhe Zhang,et al.  A Fast Algorithm for Generalized Arc Consistency of the Alldifferent Constraint , 2018, IJCAI.

[30]  John N. Hooker,et al.  Consistency for 0-1 Programming , 2018, CPAIOR.

[31]  Mehdi Mhalla,et al.  Quantum Query Complexity of Some Graph Problems , 2006, SIAM J. Comput..

[32]  Andris Ambainis,et al.  Quantum search algorithms , 2004, SIGA.

[33]  Mats Carlsson,et al.  Global Constraint Catalogue: Past, Present and Future , 2007, Constraints.

[34]  T. Yato,et al.  Complexity and Completeness of Finding Another Solution and Its Application to Puzzles , 2003, IEICE Trans. Fundam. Electron. Commun. Comput. Sci..

[35]  Gilles Brassard,et al.  Tight bounds on quantum searching , 1996, quant-ph/9605034.

[36]  Kianna Wan,et al.  Improved quantum backtracking algorithms through effective resistance estimates , 2017, ArXiv.

[37]  Herbert Wiklicky,et al.  Quantum constraint programming , 2001, APPIA-GULP-PRODE.

[38]  Radoslaw Cymer Dulmage-Mendelsohn Canonical Decomposition as a generic pruning technique , 2012, Constraints.

[39]  Alfons Laarman,et al.  Hybrid divide-and-conquer approach for tree search algorithms , 2020, ArXiv.

[40]  Michael A. Trick Integer and Constraint Programming Approaches for Round-Robin Tournament Scheduling , 2002, PATAT.

[41]  G. Nemhauser,et al.  Integer Programming , 2020 .

[42]  Salman Beigi,et al.  Quantum Speedup Based on Classical Decision Trees , 2019, ArXiv.

[43]  Peter van Beek,et al.  Backtracking Search Algorithms , 2006, Handbook of Constraint Programming.

[44]  Silvio Micali,et al.  An O(v|v| c |E|) algoithm for finding maximum matching in general graphs , 1980, 21st Annual Symposium on Foundations of Computer Science (sfcs 1980).

[45]  Richard M. Karp,et al.  A n^5/2 Algorithm for Maximum Matchings in Bipartite Graphs , 1971, SWAT.

[46]  Rusins Freivalds,et al.  Quantum Query Complexity for Some Graph Problems , 2004, SOFSEM.

[47]  Andris Ambainis,et al.  Quantum algorithm for tree size estimation, with applications to backtracking and 2-player games , 2017, STOC.

[48]  Oscar H. Ibarra,et al.  Deterministic and Probabilistic Algorithms for Maximum Bipartite Matching Via Fast Matrix Multiplication , 1981, Information Processing Letters.

[49]  Paul Shaw,et al.  IBM ILOG CP optimizer for scheduling , 2018, Constraints.

[50]  J. Christopher Beck,et al.  Comparing and Integrating Constraint Programming and Temporal Planning for Quantum Circuit Compilation , 2018, ICAPS.

[51]  Petr Vilím,et al.  Edge Finding Filtering Algorithm for Discrete Cumulative Resources in O(kn log n){\mathcal O}(kn {\rm log} n) , 2009, CP.

[52]  Richard Peng,et al.  Bipartite Matching in Nearly-linear Time on Moderately Dense Graphs , 2020, 2020 IEEE 61st Annual Symposium on Foundations of Computer Science (FOCS).

[53]  Bartholomew Furrow,et al.  A panoply of quantum algorithms , 2006, Quantum Inf. Comput..

[54]  Giacomo Nannicini Fast quantum subroutines for the simplex method , 2019, ArXiv.

[55]  Shengyu Zhang,et al.  On the power of Ambainis lower bounds , 2005, Theor. Comput. Sci..

[56]  Robert E. Bixby,et al.  A Brief History of Linear and Mixed-Integer Programming Computation , 2012 .

[57]  Robert E. Tarjan,et al.  Depth-First Search and Linear Graph Algorithms , 1972, SIAM J. Comput..

[58]  Pierre Flener,et al.  A constraint-based local search backend for MiniZinc , 2015, Constraints.

[59]  H. Simonis,et al.  Sudoku as a Constraint Problem , 2005 .

[60]  Pascal Van Hentenryck,et al.  Constraint-based local search , 2018, Handbook of Heuristics.

[61]  Christoph Dürr,et al.  A Quantum Algorithm for Finding the Minimum , 1996, ArXiv.

[62]  Philippe Baptiste,et al.  Constraint-based scheduling , 2001 .

[63]  R. Cleve,et al.  Quantum algorithms revisited , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[64]  Jean-Charles Régin,et al.  A Filtering Algorithm for Constraints of Difference in CSPs , 1994, AAAI.

[65]  Satoshi Tayu,et al.  On the Quantum Query Complexity of All-Pairs Shortest Paths , 2007 .

[66]  S. Kimmel,et al.  A Query-Efficient Quantum Algorithm for Maximum Matching on General Graphs , 2021, WADS.

[67]  Alan K. Mackworth Consistency in Networks of Relations , 1977, Artif. Intell..

[68]  Philippe Baptiste,et al.  Constraint - based scheduling : applying constraint programming to scheduling problems , 2001 .

[69]  Peter van Beek,et al.  Improved Algorithms for the Global Cardinality Constraint , 2004, CP.

[70]  Krysta Marie Svore,et al.  Quantum Speed-Ups for Solving Semidefinite Programs , 2017, 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS).

[71]  Sanjeev Arora,et al.  Computational Complexity: A Modern Approach , 2009 .

[72]  Lov K. Grover,et al.  Nested quantum search and structured problems , 1998, quant-ph/9806078.

[73]  Cesare Tinelli,et al.  Handbook of Satisfiability , 2021, Handbook of Satisfiability.

[74]  Piotr Sankowski,et al.  Maximum matchings via Gaussian elimination , 2004, 45th Annual IEEE Symposium on Foundations of Computer Science.

[75]  Vijay V. Vazirani A Simplification of the MV Matching Algorithm and its Proof , 2012 .

[76]  Edward Tsang,et al.  Constraint Based Scheduling: Applying Constraint Programming to Scheduling Problems , 2003, J. Sched..

[77]  Nathan Wiebe,et al.  Quantum singular value transformation and beyond: exponential improvements for quantum matrix arithmetics , 2018, STOC.

[78]  L.-M. Duan,et al.  Experimental realization of 105-qubit random access quantum memory , 2019, npj Quantum Information.

[79]  Pascal Van Hentenryck,et al.  Edge Finding for Cumulative Scheduling , 2008, INFORMS J. Comput..

[80]  Manuela Herman,et al.  Quantum Computing: A Gentle Introduction , 2011 .

[81]  Cedric Yen-Yu Lin,et al.  Upper Bounds on Quantum Query Complexity Inspired by the Elitzur--Vaidman Bomb Tester , 2014, Theory Comput..

[82]  Martin Fürer Solving NP-Complete Problems with Quantum Search , 2008, LATIN.

[83]  Sebastian Dörn,et al.  Quantum Algorithms for Matching Problems , 2009, Theory of Computing Systems.

[84]  Andris Ambainis,et al.  Quantum Algorithms for Matching and Network Flows , 2006, STACS.