Lattice-based integration algorithms: Kronecker sequences and rank-1 lattices
暂无分享,去创建一个
Josef Dick | Friedrich Pillichshammer | Kosuke Suzuki | Takehito Yoshiki | Mario Ullrich | Mario Ullrich | F. Pillichshammer | J. Dick | Kosuke Suzuki | Takehito Yoshiki
[1] I. Sloan,et al. Lattice methods for multiple integration: theory, error analysis and examples , 1987 .
[2] V A Rvachev,et al. Compactly supported solutions of functional-differential equations and their applications , 1990 .
[3] Mario Ullrich,et al. On "Upper Error Bounds for Quadrature Formulas on Function Classes" by K.K. Frolov , 2014, MCQMC.
[4] Harald Niederreiter,et al. Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.
[5] R. M. Hathaway. On Some Points in the Theory of the Hypergeometric Function Expressed as a Double Circuit Integral , 1900 .
[6] Norman Morrison,et al. Introduction to Fourier Analysis , 1994, An Invitation to Modern Number Theory.
[7] Wolfgang M. Schmidt,et al. Simultaneous approximation to algebraic numbers by rationals , 1970 .
[8] H. Keng,et al. Applications of number theory to numerical analysis , 1981 .
[9] Vladimir N. Temlyakov,et al. Cubature formulas, discrepancy, and nonlinear approximation , 2003, J. Complex..
[10] Dirk Nuyens,et al. Fast algorithms for component-by-component construction of rank-1 lattice rules in shift-invariant reproducing kernel Hilbert spaces , 2006, Math. Comput..
[11] ShinnYih Huang. An Improvement to Zaremba’s Conjecture , 2013, 1310.3772.
[12] Optimal coefficients modulo prime powers in the three-dimensional case , 1989 .
[13] On multiplicatively badly approximable numbers. , 2011, 1101.1855.
[14] Dirk Nuyens,et al. Fast component-by-component construction of rank-1 lattice rules with a non-prime number of points , 2006, J. Complex..
[15] Mukarram Ahmad,et al. Continued fractions , 2019, Quadratic Number Theory.
[16] Jan Vybíral. Function spaces with dominating mixed smoothness , 2006 .
[17] József Beck. Probabilistic Diophantine Approximation , 2014 .
[18] J. Bourgain,et al. Zaremba’s conjecture , 2011, 100 Years of Math Milestones.
[19] A. Stroud. Approximate calculation of multiple integrals , 1973 .
[20] H. Niederreiter. Dyadic fractions with small partial quotients , 1986 .
[21] Harald Niederreiter,et al. Lattice rules for multiple integration and discrepancy , 1990 .
[22] Good Lattice Pointsの計算法について , 1986 .
[23] H. Triebel,et al. Topics in Fourier Analysis and Function Spaces , 1987 .
[24] I. Sloan. Lattice Methods for Multiple Integration , 1994 .
[25] Van Kien Nguyen,et al. Change of Variable in Spaces of Mixed Smoothness and Numerical Integration of Multivariate Functions on the Unit Cube , 2015 .
[26] V V Dubinin. Cubature formulae for Besov classes , 1997 .
[27] József Beck,et al. Probabilistic diophantine approximation, I. Kronecker sequences , 1994 .
[28] S. K. Zaremba,et al. Good lattice points, discrepancy, and numerical integration , 1966 .
[29] V. N. Temli︠a︡kov. Approximation of periodic functions , 1993 .
[30] H. Niederreiter. Quasi-Monte Carlo methods and pseudo-random numbers , 1978 .
[31] E. Stein,et al. Introduction to Fourier Analysis on Euclidean Spaces. , 1971 .
[32] S. K. Zaremba,et al. La Méthode des “Bons Treillis” pour le Calcul des Intégrales Multiples , 1972 .
[33] S. K. Zaremba. Good lattice points modulo composite numbers , 1974 .
[34] S. B. Stechkin. Approximation of periodic functions , 1974 .
[35] Mario Ullrich,et al. The Role of Frolov's Cubature Formula for Functions with Bounded Mixed Derivative , 2015, SIAM J. Numer. Anal..