Lattice-based integration algorithms: Kronecker sequences and rank-1 lattices

[1]  I. Sloan,et al.  Lattice methods for multiple integration: theory, error analysis and examples , 1987 .

[2]  V A Rvachev,et al.  Compactly supported solutions of functional-differential equations and their applications , 1990 .

[3]  Mario Ullrich,et al.  On "Upper Error Bounds for Quadrature Formulas on Function Classes" by K.K. Frolov , 2014, MCQMC.

[4]  Harald Niederreiter,et al.  Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.

[5]  R. M. Hathaway On Some Points in the Theory of the Hypergeometric Function Expressed as a Double Circuit Integral , 1900 .

[6]  Norman Morrison,et al.  Introduction to Fourier Analysis , 1994, An Invitation to Modern Number Theory.

[7]  Wolfgang M. Schmidt,et al.  Simultaneous approximation to algebraic numbers by rationals , 1970 .

[8]  H. Keng,et al.  Applications of number theory to numerical analysis , 1981 .

[9]  Vladimir N. Temlyakov,et al.  Cubature formulas, discrepancy, and nonlinear approximation , 2003, J. Complex..

[10]  Dirk Nuyens,et al.  Fast algorithms for component-by-component construction of rank-1 lattice rules in shift-invariant reproducing kernel Hilbert spaces , 2006, Math. Comput..

[11]  ShinnYih Huang An Improvement to Zaremba’s Conjecture , 2013, 1310.3772.

[12]  Optimal coefficients modulo prime powers in the three-dimensional case , 1989 .

[13]  On multiplicatively badly approximable numbers. , 2011, 1101.1855.

[14]  Dirk Nuyens,et al.  Fast component-by-component construction of rank-1 lattice rules with a non-prime number of points , 2006, J. Complex..

[15]  Mukarram Ahmad,et al.  Continued fractions , 2019, Quadratic Number Theory.

[16]  Jan Vybíral Function spaces with dominating mixed smoothness , 2006 .

[17]  József Beck Probabilistic Diophantine Approximation , 2014 .

[18]  J. Bourgain,et al.  Zaremba’s conjecture , 2011, 100 Years of Math Milestones.

[19]  A. Stroud Approximate calculation of multiple integrals , 1973 .

[20]  H. Niederreiter Dyadic fractions with small partial quotients , 1986 .

[21]  Harald Niederreiter,et al.  Lattice rules for multiple integration and discrepancy , 1990 .

[22]  Good Lattice Pointsの計算法について , 1986 .

[23]  H. Triebel,et al.  Topics in Fourier Analysis and Function Spaces , 1987 .

[24]  I. Sloan Lattice Methods for Multiple Integration , 1994 .

[25]  Van Kien Nguyen,et al.  Change of Variable in Spaces of Mixed Smoothness and Numerical Integration of Multivariate Functions on the Unit Cube , 2015 .

[26]  V V Dubinin Cubature formulae for Besov classes , 1997 .

[27]  József Beck,et al.  Probabilistic diophantine approximation, I. Kronecker sequences , 1994 .

[28]  S. K. Zaremba,et al.  Good lattice points, discrepancy, and numerical integration , 1966 .

[29]  V. N. Temli︠a︡kov Approximation of periodic functions , 1993 .

[30]  H. Niederreiter Quasi-Monte Carlo methods and pseudo-random numbers , 1978 .

[31]  E. Stein,et al.  Introduction to Fourier Analysis on Euclidean Spaces. , 1971 .

[32]  S. K. Zaremba,et al.  La Méthode des “Bons Treillis” pour le Calcul des Intégrales Multiples , 1972 .

[33]  S. K. Zaremba Good lattice points modulo composite numbers , 1974 .

[34]  S. B. Stechkin Approximation of periodic functions , 1974 .

[35]  Mario Ullrich,et al.  The Role of Frolov's Cubature Formula for Functions with Bounded Mixed Derivative , 2015, SIAM J. Numer. Anal..