Thermodynamics and kinetics of glassy and liquid phase-change materials

[1]  M. Wuttig,et al.  Glass transition of the phase change material AIST and its impact on crystallization , 2021, 2103.06565.

[2]  M. Kassem,et al.  Bulk Glassy GeTe2: A Missing Member of the Tetrahedral GeX2 Family and a Precursor for the Next Generation of Phase-Change Materials , 2021 .

[3]  M. Wuttig,et al.  Approaching the Glass Transition Temperature of GeTe by Crystallizing Ge15Te85 , 2020, physica status solidi (RRL) – Rapid Research Letters.

[4]  Hajime Tanaka Liquid-liquid transition and polyamorphism. , 2020, The Journal of chemical physics.

[5]  Lei Wang,et al.  Monatomic 2D phase-change memory for precise neuromorphic computing , 2020 .

[6]  Garrett J. Coleman,et al.  Violation of the Stokes–Einstein relation in Ge2Sb2Te5, GeTe, Ag4In3Sb67Te26, and Ge15Sb85, and its connection to fast crystallization , 2020 .

[7]  Wei Zhang,et al.  Unveiling the structural origin to control resistance drift in phase-change memory materials , 2020, Materials Today.

[8]  M. Wuttig,et al.  Chalcogenides by Design: Functionality through Metavalent Bonding and Confinement , 2020, Advanced materials.

[9]  C. Angell,et al.  Liquid‐liquid phase transitions in glass‐forming systems and their implications for memory technology , 2020 .

[10]  P. Fantini Phase change memory applications: the history, the present and the future , 2020, Journal of Physics D: Applied Physics.

[11]  M. Wuttig,et al.  Control of effective cooling rate upon magnetron sputter deposition of glassy Ge15Te85 , 2020, Scripta Materialia.

[12]  M. Wuttig,et al.  Uncovering β-relaxations in amorphous phase-change materials , 2020, Science Advances.

[13]  Weihua Wang,et al.  Dynamic relaxations and relaxation-property relationships in metallic glasses , 2019 .

[14]  X. Miao,et al.  Resistance Drift Suppression Utilizing GeTe/Sb2Te3 Superlattice‐Like Phase‐Change Materials , 2019, Advanced Electronic Materials.

[15]  M. Wuttig,et al.  Understanding the Structure and Properties of Sesqui‐Chalcogenides (i.e., V2VI3 or Pn2Ch3 (Pn = Pnictogen, Ch = Chalcogen) Compounds) from a Bonding Perspective , 2019, Advanced materials.

[16]  M. Wuttig,et al.  Phase-change materials: Empowered by an unconventional bonding mechanism , 2019, MRS Bulletin.

[17]  C. Angell,et al.  Phase-change materials: The view from the liquid phase and the metallicity parameter , 2019, MRS Bulletin.

[18]  Wei Zhang,et al.  Phase-change heterostructure enables ultralow noise and drift for memory operation , 2019, Science.

[19]  M. Wuttig,et al.  Switching between Crystallization from the Glassy and the Undercooled Liquid Phase in Phase Change Material Ge2Sb2Te5 , 2019, Advanced materials.

[20]  P. Lucas Fragile-to-strong transitions in glass forming liquids , 2019, Journal of Non-Crystalline Solids.

[21]  Jan Siegel,et al.  Femtosecond x-ray diffraction reveals a liquid–liquid phase transition in phase-change materials , 2019, Science.

[22]  X. Miao,et al.  Stabilizing amorphous Sb by adding alien seeds for durable memory materials. , 2019, Physical chemistry chemical physics : PCCP.

[23]  Volker L. Deringer,et al.  A Quantum‐Mechanical Map for Bonding and Properties in Solids , 2018, Advanced materials.

[24]  Nathan Youngblood,et al.  Device‐Level Photonic Memories and Logic Applications Using Phase‐Change Materials , 2018, Advanced materials.

[25]  Manuel Le Gallo,et al.  Monatomic phase change memory , 2018, Nature Materials.

[26]  M. Stolpe,et al.  Breakdown of the Stokes-Einstein relation above the melting temperature in a liquid phase-change material , 2018, Science Advances.

[27]  Richard Dronskowski,et al.  Unique Bond Breaking in Crystalline Phase Change Materials and the Quest for Metavalent Bonding , 2018, Advanced materials.

[28]  M. Micoulaut,et al.  From elemental tellurium to Ge2Sb2Te5 melts: High temperature dynamic and relaxation properties in relationship with the possible fragile to strong transition. , 2018, The Journal of chemical physics.

[29]  Wei Zhang,et al.  Reducing the stochasticity of crystal nucleation to enable subnanosecond memory writing , 2017, Science.

[30]  Matthias Wuttig,et al.  Incipient Metals: Functional Materials with a Unique Bonding Mechanism , 2017, Advanced materials.

[31]  Z. Evenson,et al.  Relaxation processes and physical aging in metallic glasses , 2017, Journal of physics. Condensed matter : an Institute of Physics journal.

[32]  R. Richert,et al.  Structural rearrangements governing Johari-Goldstein relaxations in metallic glasses , 2017, Science Advances.

[33]  Q. Nie,et al.  Resolving glass transition in Te-based phase-change materials by modulated differential scanning calorimetry , 2017 .

[34]  Thomas Taubner,et al.  Phase-change materials for non-volatile photonic applications , 2017, Nature Photonics.

[35]  Thomas P. Parnell,et al.  Temporal correlation detection using computational phase-change memory , 2017, Nature Communications.

[36]  Xiang Shen,et al.  Unraveling the Crystallization Kinetics of Supercooled Liquid GeTe by Ultrafast Calorimetry , 2017 .

[37]  Ralf Busch,et al.  Structural evolution on medium-range-order during the fragile-strong transition in Ge15Te85 , 2017 .

[38]  Bart J. Kooi,et al.  Crystallization Kinetics of GeSbTe Phase-Change Nanoparticles Resolved by Ultrafast Calorimetry , 2017, The journal of physical chemistry. C, Nanomaterials and interfaces.

[39]  M. Wuttig,et al.  Dielectric properties of amorphous phase-change materials , 2017 .

[40]  Thomas N. Theis,et al.  The End of Moore's Law: A New Beginning for Information Technology , 2017, Computing in Science & Engineering.

[41]  Garrett J. Coleman,et al.  Glass Transitions, Semiconductor-Metal Transitions, and Fragilities in Ge-V-Te (V = As, Sb) Liquid Alloys: The Difference One Element Can Make , 2016, 1610.08164.

[42]  Jian Zhou,et al.  Yttrium-Doped Sb2Te3: A Promising Material for Phase-Change Memory. , 2016, ACS applied materials & interfaces.

[43]  C David Wright,et al.  Phase-change devices: Crystal-clear neuronal computing. , 2016, Nature nanotechnology.

[44]  I. Kaban,et al.  Structural, electronic and kinetic properties of the phase-change material Ge2Sb2Te5 in the liquid state , 2016, Scientific Reports.

[45]  M. Micoulaut Relaxation and physical aging in network glasses: a review , 2016, Reports on progress in physics. Physical Society.

[46]  I. Kaban,et al.  Viscosity of liquid Ag-In-Sb-Te: Evidence of a fragile-to-strong crossover. , 2016, The Journal of chemical physics.

[47]  M. Demetriou,et al.  Quantifying the origin of metallic glass formation , 2016, Nature Communications.

[48]  Matthias Wuttig,et al.  Relation between bandgap and resistance drift in amorphous phase change materials , 2015, Scientific Reports.

[49]  Jörg Behler,et al.  Microscopic origin of resistance drift in the amorphous state of the phase-change compound GeTe , 2015 .

[50]  Aaron M. Lindenberg,et al.  How Supercooled Liquid Phase-Change Materials Crystallize: Snapshots after Femtosecond Optical Excitation , 2015 .

[51]  Young-Chang Joo,et al.  The phase-change kinetics of amorphous Ge2Sb2Te5 and device characteristics investigated by thin-film mechanics , 2015 .

[52]  Daniel W. Hewak,et al.  Fragile‐to‐Strong Crossover in Supercooled Liquid Ag‐In‐Sb‐Te Studied by Ultrafast Calorimetry , 2015 .

[53]  C. Angell,et al.  Phase change alloy viscosities down to T g using Adam-Gibbs-equation fittings to excess entropy data: A fragile-to-strong transition , 2015 .

[54]  Matthias Wuttig,et al.  Disorder Control in Crystalline GeSb2Te4 Using High Pressure , 2015, Advanced science.

[55]  S. Sastry,et al.  Short-Time Beta Relaxation in Glass-Forming Liquids Is Cooperative in Nature. , 2015, Physical review letters.

[56]  Matthias Wuttig,et al.  Aging mechanisms in amorphous phase-change materials , 2015, Nature Communications.

[57]  A. L. Greer,et al.  Kissinger method applied to the crystallization of glass-forming liquids: Regimes revealed by ultra-fast-heating calorimetry , 2015 .

[58]  Matthias Wuttig,et al.  How fragility makes phase-change data storage robust: insights from ab initio simulations , 2014, Scientific Reports.

[59]  Jiangwei Wang,et al.  Formation of monatomic metallic glasses through ultrafast liquid quenching , 2014, Nature.

[60]  Songlin Feng,et al.  One order of magnitude faster phase change at reduced power in Ti-Sb-Te , 2014, Nature Communications.

[61]  Daniel Krebs,et al.  Crystal growth within a phase change memory cell , 2014, Nature Communications.

[62]  T. Unruh,et al.  Coupled relaxation processes in a glass forming ZrTiNiCuBe liquid , 2014 .

[63]  A. L. Greer,et al.  Fast and slow crystal growth kinetics in glass-forming melts. , 2014, The Journal of chemical physics.

[64]  Mehdi Asheghi,et al.  Ultrafast characterization of phase-change material crystallization properties in the melt-quenched amorphous phase. , 2014, Nano letters.

[65]  M. Wuttig,et al.  Specific Heat of (GeTe)x(Sb2Te3)1–x Phase-Change Materials: The Impact of Disorder and Anharmonicity , 2014 .

[66]  Matthias Wuttig,et al.  Measurement of crystal growth velocity in a melt-quenched phase-change material , 2013, Nature Communications.

[67]  T. Topuria,et al.  Irreversible reactions studied with nanosecond transmission electron microscopy movies: Laser crystallization of phase change materials , 2013 .

[68]  Weihua Wang,et al.  The β relaxation in metallic glasses: an overview , 2013 .

[69]  G. Trápaga,et al.  Dielectric properties of Ge2Sb2Te5 phase-change films , 2013 .

[70]  M. Wuttig,et al.  Stoichiometry dependence of resistance drift phenomena in amorphous GeSnTe phase-change alloys , 2013 .

[71]  Matthias Wuttig,et al.  Impact of DoS changes on resistance drift and threshold switching in amorphous phase change materials , 2012 .

[72]  W. Wang,et al.  Correlation between β relaxation and self-diffusion of the smallest constituting atoms in metallic glasses. , 2012, Physical review letters.

[73]  H. E. Kissinger,et al.  Homer Kissinger and the Kissinger equation , 2012 .

[74]  W. J. Wang,et al.  Breaking the Speed Limits of Phase-Change Memory , 2012, Science.

[75]  Behrad Gholipour,et al.  Characterization of supercooled liquid Ge2Sb2Te5 and its crystallization by ultrafast-heating calorimetry. , 2012, Nature materials.

[76]  Markus P. Schlaich,et al.  Change in Sympathetic Nerve Firing Pattern Associated with Dietary Weight Loss in the Metabolic Syndrome , 2011, Front. Physio..

[77]  Yeonwoong Jung,et al.  Extremely low drift of resistance and threshold voltage in amorphous phase change nanowire devices , 2010 .

[78]  John C. Mauro,et al.  Viscosity of glass-forming liquids , 2009, Proceedings of the National Academy of Sciences.

[79]  Börje Johansson,et al.  Formation of large voids in the amorphous phase-change memory Ge2Sb2Te5 alloy. , 2009, Physical review letters.

[80]  M. Salinga,et al.  A map for phase-change materials. , 2008, Nature materials.

[81]  Andrea L. Lacaita,et al.  Temperature acceleration of structural relaxation in amorphous Ge2Sb2Te5 , 2008 .

[82]  Lian Yu,et al.  Crystal growth kinetics exhibit a fragility-dependent decoupling from viscosity. , 2008, The Journal of chemical physics.

[83]  Weihua Wang,et al.  Thermodynamics and Kinetics of Bulk Metallic Glass , 2007 .

[84]  Chung Lam,et al.  Phase-change Memory , 2007, 2007 65th Annual Device Research Conference.

[85]  Matthias Wuttig,et al.  Calorimetric measurements of structural relaxation and glass transition temperatures in sputtered films of amorphous Te alloys used for phase change recording , 2007 .

[86]  Jeppe C. Dyre,et al.  Colloquium : The glass transition and elastic models of glass-forming liquids , 2006 .

[87]  T Yamamoto,et al.  Microstructure of fragile metallic glasses inferred from ultrasound-accelerated crystallization in Pd-based metallic glasses. , 2005, Physical review letters.

[88]  Stefano Mossa,et al.  Potential energy, relaxation, vibrational dynamics and the boson peak, of hyperquenched glasses , 2003 .

[89]  Matthias Wuttig,et al.  Calorimetric measurements of phase transformations in thin films of amorphous Te alloys used for optical data storage , 2003 .

[90]  C. Angell,et al.  Calorimetric studies of the energy landscapes of glassformers by hyperquenching methods , 2002 .

[91]  M. Lankhorst,et al.  Modelling glass transition temperatures of chalcogenide glasses. Applied to phase-change optical recording materials , 2002 .

[92]  C. Angell,et al.  The Glass Transition of Water, Based on Hyperquenching Experiments , 2001, Science.

[93]  Pablo G. Debenedetti,et al.  Supercooled liquids and the glass transition , 2001, Nature.

[94]  Paul F. McMillan,et al.  Relaxation in glassforming liquids and amorphous solids , 2000 .

[95]  H. Eugene Stanley,et al.  Entropy and dynamic properties of water below the homogeneous nucleation temperature , 1999, cond-mat/9903451.

[96]  W. Johnson,et al.  Time Scales for Viscous Flow, Atomic Transport, and Crystallization in the Liquid and Supercooled Liquid States of Zr 41.2 Ti 13.8 Cu 12.5 Ni 10.0 Be 22.5 , 1999 .

[97]  H. Sillescu,et al.  Heterogeneity at the Glass Transition: Translational and Rotational Self-Diffusion , 1997 .

[98]  R. T. Phillips,et al.  STRUCTURE OF THE OPTICAL PHASE CHANGE MEMORY ALLOY, AG-V-IN-SB-TE, DETERMINED BY OPTICAL SPECTROSCOPY AND ELECTRON DIFFRACTION , 1997 .

[99]  M. Cicerone,et al.  Enhanced translation of probe molecules in supercooled o‐terphenyl: Signature of spatially heterogeneous dynamics? , 1996 .

[100]  C. Angell,et al.  Formation of Glasses from Liquids and Biopolymers , 1995, Science.

[101]  S. Hosokawa,et al.  Density measurements for liquid Se-Te mixtures at high temperatures and pressures , 1993 .

[102]  Cornelius T. Moynihan,et al.  Correlation between the Width of the Glass Transition Region and the Temperature Dependence of the Viscosity of High‐Tg Glasses , 1993 .

[103]  Y. Sakaguchi,et al.  X-ray diffraction measurements for liquid As2Se3 up to the semiconductor-metal transition region , 1992 .

[104]  N. Yamada,et al.  Rapid‐phase transitions of GeTe‐Sb2Te3 pseudobinary amorphous thin films for an optical disk memory , 1991 .

[105]  H. A. Davies The kinetics of formation of A AuGeSi metallic glass , 1975 .

[106]  J. C. Tucker,et al.  Dependence of the glass transition temperature on heating and cooling rate , 1974 .

[107]  D. Uhlmann A kinetic treatment of glass formation , 1972 .

[108]  D. Turnbull Under what conditions can a glass be formed , 1969 .

[109]  G. Adam,et al.  On the Temperature Dependence of Cooperative Relaxation Properties in Glass‐Forming Liquids , 1965 .

[110]  Volker L. Deringer,et al.  Chemical understanding of resistance drift suppression in Ge–Sn–Te phase-change memory materials , 2020, Journal of Materials Chemistry C.

[111]  Wei Zhang,et al.  Designing crystallization in phase-change materials for universal memory and neuro-inspired computing , 2019, Nature Reviews Materials.

[112]  A. L. Greer,et al.  Chalcogenides for Phase-Change Memory , 2018 .