Evolution of the cichlid visual palette through ontogenetic subfunctionalization of the opsin gene arrays.

The evolution of cone opsin genes is characterized by a dynamic process of gene birth and death through gene duplication and loss. However, the forces governing the retention and death of opsin genes are poorly understood. African cichlid fishes have a range of ecologies, differing in habitat and foraging style, which make them ideal for examining the selective forces acting on the opsin gene family. In this work, we present data on the riverine cichlid, Oreochromis niloticus, which is an ancestral outgroup to the cichlid adaptive radiations in the Great African lakes. We identify 7 cone opsin genes with several instances of gene duplication. We also characterize the spectral sensitivities of these genes through reconstitution of visual pigments. Peak absorbances demonstrate that each tilapia cone opsin gene codes for a spectrally distinct visual pigment: SWS1 (360 nm), SWS2b (423 nm), SWS2a (456 nm), Rh2b (472 nm), Rh2a beta (518 nm), Rh2a alpha (528 nm), and LWS (561 nm). Furthermore, quantitative reverse transcription polymerase chain reaction at 3 ontogenetic time points demonstrates that although only 4 genes (SWS2a, Rh2a alpha and beta, and LWS) are expressed in adults, mRNAs for the other genes are all expressed during ontogeny. Therefore, subfunctionalization through differential ontogenetic expression may be a key mechanism for preservation of opsin genes. The distinct peak absorbances of these preserved opsin genes provide a palette from which selection creates the diverse visual sensitivities found among the cichlid species of the lacustrine adaptive radiations.

[1]  I. Shimizu,et al.  Molecular cloning of cone opsin genes and their expression in the retina of a smelt, Ayu (Plecoglossus altivelis, Teleostei). , 2005, Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology.

[2]  Michael P. Cummings,et al.  PAUP* [Phylogenetic Analysis Using Parsimony (and Other Methods)] , 2004 .

[3]  David M. Hunt,et al.  Mix and Match Color Vision: Tuning Spectral Sensitivity by Differential Opsin Gene Expression in Lake Malawi Cichlids , 2005, Current Biology.

[4]  S. Yokoyama,et al.  Convergent evolution of the red- and green-like visual pigment genes in fish, Astyanax fasciatus, and human. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[5]  D. Hartl,et al.  Convergent loss of an anciently duplicated, functionally divergent RH2 opsin gene in the fugu and Tetraodon pufferfish lineages. , 2005, Gene.

[6]  A. Briscoe,et al.  Early duplication and functional diversification of the opsin gene family in insects. , 2004, Molecular biology and evolution.

[7]  J. Bowmaker,et al.  A novel amino acid substitution is responsible for spectral tuning in a rodent violet-sensitive visual pigment. , 2004, Biochemistry.

[8]  J. Inoue,et al.  Major patterns of higher teleostean phylogenies: a new perspective based on 100 complete mitochondrial DNA sequences. , 2003, Molecular phylogenetics and evolution.

[9]  M. P. Francino,et al.  An adaptive radiation model for the origin of new gene functions , 2005, Nature Genetics.

[10]  P. Ekström,et al.  Molecular identification and developmental expression of UV and green opsin mRNAs in the pineal organ of the Atlantic halibut. , 2002, Brain research. Developmental brain research.

[11]  Hiroshi Mitani,et al.  Functional characterization of visual opsin repertoire in Medaka (Oryzias latipes). , 2006, Gene.

[12]  Shoji Kawamura,et al.  Gene duplication and spectral diversification of cone visual pigments of zebrafish. , 2003, Genetics.

[13]  T. Cronin,et al.  Spectral tuning of avian violet- and ultraviolet-sensitive visual pigments. , 2000, Biochemistry.

[14]  Axel Meyer,et al.  Novel evolutionary relationship among four fish model systems. , 2004, Trends in genetics : TIG.

[15]  Yusuke Takahashi,et al.  Molecular basis of spectral tuning in the newt short wavelength sensitive visual pigment. , 2003, Biochemistry.

[16]  J. Bowmaker,et al.  Spectral tuning and evolution of short wave-sensitive cone pigments in cottoid fish from Lake Baikal. , 2002, Biochemistry.

[17]  H. Khorana,et al.  Expression of a synthetic bovine rhodopsin gene in monkey kidney cells. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[18]  Michael Lynch,et al.  Genomics. Gene duplication and evolution. , 2002, Science.

[19]  J. R. Stauffer,et al.  Evolution of NADH dehydrogenase subunit 2 in east African cichlid fish. , 1995, Molecular phylogenetics and evolution.

[20]  J. Bowmaker,et al.  Colour vision and speciation in Lake Victoria cichlids of the genus Pundamilia , 2005, Molecular ecology.

[21]  D. A. Cameron,et al.  Photoreceptor Differentiation during Retinal Development, Growth, and Regeneration in a Metamorphic Vertebrate , 2004, The Journal of Neuroscience.

[22]  T. Kocher,et al.  Visual pigments of African cichlid fishes: evidence for ultraviolet vision from microspectrophotometry and DNA sequences , 2000, Vision Research.

[23]  N. Saitou,et al.  The neighbor-joining method: a new method for reconstructing phylogenetic trees. , 1987, Molecular biology and evolution.

[24]  I. N. Flamarique,et al.  Expression of pineal ultraviolet- and green-like opsins in the pineal organ and retina of teleosts. , 2001, The Journal of experimental biology.

[25]  O. Hisatomi,et al.  The signaling pathway in photoresponses that may be mediated by visual pigments in erythrophores of Nile tilapia. , 2005, Pigment cell research.

[26]  R. Molday,et al.  Monoclonal antibodies to rhodopsin: characterization, cross-reactivity, and application as structural probes. , 1983, Biochemistry.

[27]  N. Blow,et al.  Molecular evolution of color vision of zebra finch. , 2000, Gene.

[28]  T. Spady,et al.  Population variation in opsin expression in the bluefin killifish, Lucania goodei: a real-time PCR study , 2004, Journal of Comparative Physiology A.

[29]  Levine Js,et al.  Visual pigments in teleost fishes : effects of habitat, microhabitat, and behavior on visual system evolution , 1979 .

[30]  J. Bowmaker,et al.  Divergent mechanisms for the tuning of shortwave sensitive visual pigments in vertebrates , 2004, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[31]  Hugh M Robertson,et al.  G Protein-Coupled Receptors in Anopheles gambiae , 2002, Science.

[32]  J. R. Stauffer,et al.  Photopigment spectral absorbance of Lake Malawi cichlids , 2006 .

[33]  D. Oprian,et al.  Molecular determinants of human red/green color discrimination , 1994, Neuron.

[34]  J. Mollon,et al.  Sequence divergence and copy number of the middle- and long-wave photopigment genes in old world monkeys , 1992, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[35]  A. Force,et al.  Preservation of duplicate genes by complementary, degenerative mutations. , 1999, Genetics.

[36]  Kevin R. Thornton,et al.  Gene duplication and evolution. , 2001, Science.

[37]  T. Spady,et al.  Visual communication in east African cichlid fishes: diversity in a phylogenetic context , 2006 .

[38]  M. P. Cummings,et al.  PAUP* Phylogenetic analysis using parsimony (*and other methods) Version 4 , 2000 .

[39]  J. Inoue,et al.  Mitochondrial Genomics of Ostariophysan Fishes: Perspectives on Phylogeny and Biogeography , 2003, Journal of Molecular Evolution.

[40]  D. Liberles,et al.  Subfunctionalization of duplicated genes as a transition state to neofunctionalization , 2005, BMC Evolutionary Biology.

[41]  H. Khorana,et al.  A single amino acid substitution in rhodopsin (lysine 248----leucine) prevents activation of transducin. , 1988, The Journal of biological chemistry.

[42]  S. Yokoyama,et al.  Gene duplications and evolution of the short wavelength-sensitive visual pigments in vertebrates. , 1994, Molecular biology and evolution.

[43]  J. Nathans,et al.  Cloning and expression of goldfish opsin sequences. , 1993, Biochemistry.

[44]  K. Palczewski,et al.  Crystal Structure of Rhodopsin: A G‐Protein‐Coupled Receptor , 2002, Chembiochem : a European journal of chemical biology.

[45]  C. Hawryshyn,et al.  Functional mapping of ultraviolet photosensitivity during metamorphic transitions in a salmonid fish, Oncorhynchus mykiss. , 2001, The Journal of experimental biology.

[46]  S. Yokoyama,et al.  Multiple origins of the green-sensitive opsin genes in fish , 1994, Journal of Molecular Evolution.

[47]  K. Donner,et al.  In search of the visual pigment template , 2000, Visual Neuroscience.

[48]  M. Nishida,et al.  Mitochondrial Molecular Clocks and the Origin of Euteleostean Biodiversity: Familial Radiation of Perciforms May Have Predated the Cretaceous/Tertiary Boundary , 2000 .

[49]  G. Barlow,et al.  Fishes of the world , 2004, Environmental Biology of Fishes.

[50]  E. MacNichol,et al.  Visual pigments in teleost fishes: effects of habitat, microhabitat, and behavior on visual system evolution. , 1979, Sensory processes.

[51]  Dr. Susumu Ohno Evolution by Gene Duplication , 1970, Springer Berlin Heidelberg.

[52]  Shoji Kawamura,et al.  Temporal and spatial changes in the expression pattern of multiple red and green subtype opsin genes during zebrafish development , 2005, Journal of Experimental Biology.

[53]  Masahiro Kato The Biology of Biodiversity , 2000, Springer Japan.

[54]  T. Kocher,et al.  Cone opsin genes of african cichlid fishes: tuning spectral sensitivity by differential gene expression. , 2001, Molecular biology and evolution.

[55]  J. Mollon,et al.  The evolution of trichromatic color vision by opsin gene duplication in New World and Old World primates. , 1999, Genome research.

[56]  Russell D. Fernald,et al.  Visual receptor pigments in the african cichlid fish,Haplochromis burtoni , 1980, Vision Research.

[57]  D. Hartl,et al.  Opsin phylogeny and evolution: a model for blue shifts in wavelength regulation. , 1995, Molecular phylogenetics and evolution.

[58]  R. Fernald,et al.  Diurnal rhythm of cone opsin expression in the teleost fish Haplochromis burtoni , 2005, Visual Neuroscience.

[59]  J. Nathans,et al.  Molecular genetics of human color vision: the genes encoding blue, green, and red pigments. , 1986, Science.

[60]  M. Lynch,et al.  The evolutionary fate and consequences of duplicate genes. , 2000, Science.

[61]  Jay Neitz,et al.  Trichromatic colour vision in New World monkeys , 1996, Nature.

[62]  M. A. Knight,et al.  Ancient colour vision: multiple opsin genes in the ancestral vertebrates , 2003, Current Biology.

[63]  T. Spady,et al.  Adaptive molecular evolution in the opsin genes of rapidly speciating cichlid species. , 2005, Molecular biology and evolution.

[64]  A. Briscoe,et al.  Functional diversification of lepidopteran opsins following gene duplication. , 2001, Molecular biology and evolution.

[65]  M. Lynch,et al.  The Origins of Genome Complexity , 2003, Science.

[66]  Shaun P. Collin,et al.  Communication in Fishes , 2006 .

[67]  J. Bowmaker,et al.  The molecular mechanism for the spectral shifts between vertebrate ultraviolet- and violet-sensitive cone visual pigments. , 2002, The Biochemical journal.

[68]  F. Tokunaga,et al.  Phylogenetic relationships among vertebrate visual pigments , 1994, Vision Research.

[69]  S. Collin,et al.  Opsins: Evolution in Waiting , 2005, Current Biology.