Differentiation of sCJD and vCJD forms by automated analysis of basal ganglia intensity distribution in multisequence MRI of the brain-definition and evaluation of new MRI-based ratios

We present a method for the analysis of basal ganglia (including the thalamus) for accurate detection of human spongiform encephalopathy in multisequence magnetic resonance imaging (MRI) of the brain. One common feature of most forms of prion protein diseases is the appearance of hyperintensities in the deep grey matter area of the brain in T2-weighted magnetic resonance (MR) images. We employ T1, T2, and Flair-T2 MR sequences for the detection of intensity deviations in the internal nuclei. First, the MR data are registered to a probabilistic atlas and normalized in intensity. Then smoothing is applied with edge enhancement. The segmentation of hyperintensities is performed using a model of the human visual system. For more accurate results, a priori anatomical data from a segmented atlas are employed to refine the registration and remove false positives. The results are robust over the patient data and in accordance with the clinical ground truth. Our method further allows the quantification of intensity distributions in basal ganglia. The caudate nuclei are highlighted as main areas of diagnosis of sporadic Creutzfeldt-Jakob Disease (sCJD), in agreement with the histological data. The algorithm permitted the classification of the intensities of abnormal signals in sCJD patient FLAIR images with a higher hypersignal in caudate nuclei (10/10) and putamen (6/10) than in thalami. Defining normalized MRI measures of the intensity relations between the internal grey nuclei of patients, we robustly differentiate sCJD and variant CJD (vCJD) patients, in an attempt to create an automatic classification tool of human spongiform encephalopathies

[1]  Eve C. Johnstone,et al.  Structural Gray Matter Differences between First-Episode Schizophrenics and Normal Controls Using Voxel-Based Morphometry , 2002, NeuroImage.

[2]  W. Lin,et al.  Brain magnetic resonance diffusion abnormalities in Creutzfeldt-Jakob disease. , 1997, Archives of neurology.

[3]  Nicholas Ayache,et al.  A Multiscale Feature Detector for Morphological Analysis of the Brain , 2003, MICCAI.

[4]  S. Cousens,et al.  Diagnosis of new variant Creutzfeldt‐Jakob disease , 2000, Annals of neurology.

[5]  A Coulthard,et al.  Quantitative analysis of MRI signal intensity in new variant Creutzfeldt-Jakob disease. , 1999, The British journal of radiology.

[6]  James W Ironside,et al.  The pulvinar sign on magnetic resonance imaging in variant Creutzfeldt-Jakob disease , 2000, The Lancet.

[7]  P B Hoffer,et al.  Computerized three-dimensional segmented human anatomy. , 1994, Medical physics.

[8]  Marius George Linguraru Feature detection in mammographic image analysis , 2004 .

[9]  Ali Hojjatoleslami,et al.  MR intensity analysis to discriminate variant, sporadic CJD and non-CJD dementia patients , 2004 .

[10]  Nicholas Ayache,et al.  Automated Analysis of Basal Ganglia Intensity Distribution in Multisequence MRI of the Brain - Application to Creutzfeldt-Jakob Disease , 2004 .

[11]  Marco Onofrj,et al.  Early MRI findings in Creutzfeldt-Jakob disease , 1993, Journal of Neurology.

[12]  Michael Brady,et al.  Foveal Algorithm for the Detection of Microcalcification Clusters: A FROC Analysis , 2004, MICCAI.

[13]  Parry Moon,et al.  Specification of foveal adaptation , 1943 .

[14]  Mark Head,et al.  Preclinical variant CJD after blood transfusion in a PRNP codon 129 heterozygous patient , 2004 .

[15]  Koen Van Leemput,et al.  Quantitative analysis of signal abnormalities in MR imaging for multiple sclerosis and creutzfeldt-jakob disease , 2001 .

[16]  Shigeo Abe DrEng Pattern Classification , 2001, Springer London.

[17]  C Marsault,et al.  Sporadic CJD clinically mimicking variant CJD with bilateral increased signal in the pulvinar , 2002, Neurology.

[18]  Andrew Zisserman,et al.  Estimation of the partial volume effect in MRI , 2002, Medical Image Anal..

[19]  Carl-Fredrik Westin,et al.  Image Processing for Diffusion Tensor Magnetic Resonance Imaging , 1999, MICCAI.

[20]  John Bartlett,et al.  Preclinical vCJD after blood transfusion in a PRNP codon 129 heterozygous patient , 2004 .

[22]  Koenraad Van Leemput,et al.  Automated segmentation of multiple sclerosis lesions by model outlier detection , 2001, IEEE Transactions on Medical Imaging.

[23]  H. Urbach,et al.  MRI in sporadic Creutzfeldt-Jakob disease: Correlation with clinical and neuropathological data , 1998, Neuroradiology.

[24]  Didier Dormont,et al.  Prion protein deposits match magnetic resonance imaging signal abnormalities in Creutzfeldt‐Jakob disease , 2002, Annals of neurology.

[25]  J. Hogg Magnetic resonance imaging. , 1994, Journal of the Royal Naval Medical Service.

[26]  Jean Serra,et al.  Image Analysis and Mathematical Morphology , 1983 .

[27]  D. Dormont,et al.  New variant of Creutzfeldt Jakob disease. , 2000, Euro surveillance : bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin.

[28]  J. T. Wilmink,et al.  New MRI findings in Creutzfeldt-Jakob disease: high signal in the globus pallidus on T 1-weighted images , 1999, Neuroradiology.

[29]  Sébastien Ourselin,et al.  Block Matching: A General Framework to Improve Robustness of Rigid Registration of Medical Images , 2000, MICCAI.

[30]  Louis Lemieux,et al.  The detection and significance of subtle changes in mixed-signal brain lesions by serial MRI scan matching and spatial normalization , 1998, Medical Image Anal..

[31]  E. Hsu,et al.  Analytical expressions for the NMR apparent diffusion coefficients in an anisotropic system and a simplified method for determining fiber orientation , 1995, Magnetic resonance in medicine.

[32]  David G. Stork,et al.  Pattern Classification (2nd ed.) , 1999 .

[33]  Nicholas Ayache,et al.  Iconic feature based nonrigid registration: the PASHA algorithm , 2003, Comput. Vis. Image Underst..

[34]  I. Zerr,et al.  MR imaging of Creutzfeldt-Jakob disease. , 1996, Radiology.

[35]  Bertrand Fontaine,et al.  MRI and the second French case of vCJD , 2000, The Lancet.

[36]  J Mazziotta,et al.  A probabilistic atlas and reference system for the human brain: International Consortium for Brain Mapping (ICBM). , 2001, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[37]  W. Robberecht,et al.  Diffusion-weighted magnetic resonance imaging in Creutzfeldt-Jakob disease , 1997, The Lancet.

[38]  Joseph P. Hornak,et al.  The Basics of MRI , 2003, WWW 2003.

[39]  D. Louis Collins,et al.  Design and construction of a realistic digital brain phantom , 1998, IEEE Transactions on Medical Imaging.

[40]  J. Brandel,et al.  Clinical aspects of human spongiform encephalopathies, with the exception of iatrogenic forms. , 1999, Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.

[41]  Joachim Weickert,et al.  Anisotropic diffusion in image processing , 1996 .

[42]  Alan C. F. Colchester,et al.  The Putamen Intensity Gradient in CJD Diagnosis , 2002, MICCAI.

[43]  H. Gertz,et al.  Creutzfeldt-Jakob disease: correlation of MRI and neuropathologic findings. , 1988, Neurology.

[44]  Karl J. Friston,et al.  Voxel-Based Morphometry—The Methods , 2000, NeuroImage.

[45]  H. Gertz,et al.  Creutzfeldt‐Jakob disease , 1988, Neurology.

[46]  Ralph B. D'Agostino,et al.  Goodness-of-Fit-Techniques , 2020 .

[47]  R. Anderson,et al.  Creutzfeldt-Jakob disease: high caudate signal on magnetic resonance imaging. , 1989, Southern medical journal.

[48]  S W Atlas,et al.  Magnetic resonance imaging of Creutzfeldt‐Jacob disease , 1991, Annals of neurology.

[49]  M. Bahn,et al.  Abnormal diffusion-weighted magnetic resonance images in Creutzfeldt-Jakob disease. , 1999, Archives of neurology.

[50]  Stefan Skare Optimisation in strategies in diffusion tensor MR imaging , 2002 .

[51]  A. Alpérovitch,et al.  Diagnosis of Creutzfeldt-Jakob disease , 2000, Neurology.

[52]  Emma J. Burton,et al.  A comprehensive study of gray matter loss in patients with Alzheimer’s disease using optimized voxel-based morphometry , 2003, NeuroImage.

[53]  Chris Chatfield,et al.  Statistics for Technology-A Course in Applied Statistics. , 1984 .

[54]  Alejandro F Frangi,et al.  Automatic construction of 3-D statistical deformation models of the brain using nonrigid registration , 2003, IEEE Transactions on Medical Imaging.

[55]  I. Zerr,et al.  Magnetic resonance imaging in the clinical diagnosis of Creutzfeldt-Jakob disease. , 2000, Archives of neurology.

[56]  Chris Chatfield,et al.  Statistics for Technology (A Course in Applied Statistics) , 1984 .

[57]  David J. Brooks,et al.  The genetic basis and phenotypic variability in early onset parkinsonism , 2002 .