Structures of G protein-coupled receptors reveal new opportunities for drug discovery.

[1]  Hualiang Jiang,et al.  Two disparate ligand-binding sites in the human P2Y1 receptor , 2015, Nature.

[2]  Ralf C. Kling,et al.  Molecular determinants of biased agonism at the dopamine D₂ receptor. , 2015, Journal of medicinal chemistry.

[3]  P. Kolb,et al.  Crystal structure of the human OX2 orexin receptor bound to the insomnia drug suvorexant , 2014, Nature.

[4]  Dahlia R. Weiss,et al.  Structures of mGluRs shed light on the challenges of drug development of allosteric modulators. , 2015, Current opinion in pharmacology.

[5]  Christofer S. Tautermann,et al.  What can we learn from molecular dynamics simulations for GPCR drug design? , 2014, Computational and structural biotechnology journal.

[6]  T. Schwartz,et al.  GPR40 (FFAR1) – Combined Gs and Gq signaling in vitro is associated with robust incretin secretagogue action ex vivo and in vivo , 2014, Molecular metabolism.

[7]  Anthony Ivetac,et al.  High-resolution structure of the human GPR40 receptor bound to allosteric agonist TAK-875 , 2014, Nature.

[8]  Ruben Abagyan,et al.  Advances in GPCR modeling evaluated by the GPCR Dock 2013 assessment: meeting new challenges. , 2014, Structure.

[9]  A. Mathiowetz,et al.  A potentiator of orthosteric ligand activity at GLP-1R acts via covalent modification. , 2014, Nature chemical biology.

[10]  A. Doré,et al.  Structure of class C GPCR metabotropic glutamate receptor 5 transmembrane domain , 2014, Nature.

[11]  Shane M. Devine,et al.  Molecular Mechanisms of Bitopic Ligand Engagement with the M1 Muscarinic Acetylcholine Receptor* , 2014, The Journal of Biological Chemistry.

[12]  Benjamin G Tehan,et al.  Unifying family A GPCR theories of activation. , 2014, Pharmacology & therapeutics.

[13]  Hualiang Jiang,et al.  Agonist-bound structure of the human P2Y12 receptor , 2014, Nature.

[14]  Steven M. Moss,et al.  Structure of the human P2Y12 receptor in complex with an antithrombotic drug , 2014, Nature.

[15]  S. P. Andrews,et al.  Structure-based drug design of chromone antagonists of the adenosine A2A receptor , 2014 .

[16]  Jens Meiler,et al.  Structure of a Class C GPCR Metabotropic Glutamate Receptor 1 Bound to an Allosteric Modulator , 2014, Science.

[17]  Stefano Moro,et al.  Supervised Molecular Dynamics (SuMD) as a Helpful Tool To Depict GPCR-Ligand Recognition Pathway in a Nanosecond Time Scale , 2014, J. Chem. Inf. Model..

[18]  Christopher I. Bayly,et al.  Shaping suvorexant: application of experimental and theoretical methods for driving synthetic designs , 2014, Journal of Computer-Aided Molecular Design.

[19]  R. Stevens,et al.  Huixian Wu Bound to an Allosteric Modulator Structure of a Class C GPCR Metabotropic Glutamate Receptor , 2014 .

[20]  Miles Congreve,et al.  Structure-based drug design for G protein-coupled receptors. , 2014, Progress in medicinal chemistry.

[21]  Francesca Deflorian,et al.  High end GPCR design: crafted ligand design and druggability analysis using protein structure, lipophilic hotspots and explicit water networks , 2013, In Silico Pharmacology.

[22]  J. Wess,et al.  Activation and allosteric modulation of a muscarinic acetylcholine receptor , 2013, Nature.

[23]  Hualiang Jiang,et al.  Structure of the CCR5 Chemokine Receptor–HIV Entry Inhibitor Maraviroc Complex , 2013, Science.

[24]  Chris de Graaf,et al.  Structure of the human glucagon class B G-protein-coupled receptor , 2013, Nature.

[25]  Ali Jazayeri,et al.  Structure of class B GPCR corticotropin-releasing factor receptor 1 , 2013, Nature.

[26]  Jonathan W. Essex,et al.  Water Network Perturbation in Ligand Binding: Adenosine A2A Antagonists as a Case Study , 2013, J. Chem. Inf. Model..

[27]  Bryan L. Roth,et al.  Structure of the human smoothened receptor bound to an antitumour agent , 2013, Nature.

[28]  Hualiang Jiang,et al.  Structural Basis for Molecular Recognition at Serotonin Receptors , 2013, Science.

[29]  M. Babu,et al.  Molecular signatures of G-protein-coupled receptors , 2013, Nature.

[30]  Cheng Zhang,et al.  High-resolution Crystal Structure of Human Protease-activated Receptor 1 Bound to the Antagonist Vorapaxar Hhs Public Access , 2022 .

[31]  J. Shiloach,et al.  Structure of the agonist-bound neurotensin receptor , 2012, Nature.

[32]  R. Stevens,et al.  Structural Basis for Allosteric Regulation of GPCRs by Sodium Ions , 2012, Science.

[33]  Andrea Bortolato,et al.  New insights from structural biology into the druggability of G protein-coupled receptors. , 2012, Trends in pharmacological sciences.

[34]  Hugh Rosen,et al.  Crystal Structure of a Lipid G Protein–Coupled Receptor , 2012, Science.

[35]  Nathan Robertson,et al.  Article pubs.acs.org/jmc Identification of Novel Adenosine A 2A Receptor Antagonists by Virtual Screening , 2022 .

[36]  Jonathan S. Mason,et al.  Discovery of 1,2,4-Triazine Derivatives as Adenosine A2A Antagonists using Structure Based Drug Design , 2012, Journal of medicinal chemistry.

[37]  Ron O. Dror,et al.  High-resolution crystal structure of human Protease-Activated Receptor 1 bound to the antagonist vorapaxar , 2012, Nature.

[38]  Alexander Alex,et al.  Chapter 5:Contribution of Structure-Based Drug Design to the Discovery of Marketed drugs , 2011 .

[39]  Neil J Attkins,et al.  Quantitative pharmacological analysis of antagonist binding kinetics at CRF1 receptors in vitro and in vivo , 2011, British journal of pharmacology.

[40]  M. Congreve,et al.  Structure of the adenosine A(2A) receptor in complex with ZM241385 and the xanthines XAC and caffeine. , 2011, Structure.

[41]  Albert C. Pan,et al.  Pathway and mechanism of drug binding to G-protein-coupled receptors , 2011, Proceedings of the National Academy of Sciences.

[42]  S. Rasmussen,et al.  Crystal Structure of the β2Adrenergic Receptor-Gs protein complex , 2011, Nature.

[43]  Jonathan S. Mason,et al.  Progress in Structure Based Drug Design for G Protein-Coupled Receptors , 2011, Journal of medicinal chemistry.

[44]  A. Leslie,et al.  Agonist-bound adenosine A2A receptor structures reveal common features of GPCR activation , 2011, Nature.

[45]  M. Hann Molecular obesity, potency and other addictions in drug discovery , 2011 .

[46]  Christopher G. Tate,et al.  The structural basis for agonist and partial agonist action on a β1-adrenergic receptor , 2010, Nature.

[47]  S. Rasmussen,et al.  Structure of a nanobody-stabilized active state of the β2 adrenoceptor , 2010, Nature.

[48]  R. Abagyan,et al.  Structures of the CXCR4 Chemokine GPCR with Small-Molecule and Cyclic Peptide Antagonists , 2010, Science.

[49]  D. Fairlie,et al.  Update 1 of: Over one hundred peptide-activated G protein-coupled receptors recognize ligands with turn structure. , 2010, Chemical reviews.

[50]  R. Stevens,et al.  The 2.6 Angstrom Crystal Structure of a Human A2A Adenosine Receptor Bound to an Antagonist , 2008, Science.

[51]  Gebhard F. X. Schertler,et al.  Structure of a β1-adrenergic G-protein-coupled receptor , 2008, Nature.

[52]  K. Wreggett,et al.  An Intracellular Allosteric Site for a Specific Class of Antagonists of the CC Chemokine G Protein-Coupled Receptors CCR4 and CCR5 , 2008, Molecular Pharmacology.

[53]  Yoko Shibata,et al.  Conformational thermostabilization of the β1-adrenergic receptor in a detergent-resistant form , 2008, Proceedings of the National Academy of Sciences.

[54]  R. Stevens,et al.  High-Resolution Crystal Structure of an Engineered Human β2-Adrenergic G Protein–Coupled Receptor , 2007, Science.

[55]  John P. Overington,et al.  How many drug targets are there? , 2006, Nature Reviews Drug Discovery.

[56]  Bernhard Pfeiffer,et al.  Over one hundred peptide-activated G protein-coupled receptors recognize ligands with turn structure. , 2005, Chemical reviews.

[57]  K. Palczewski,et al.  Crystal Structure of Rhodopsin: A G‐Protein‐Coupled Receptor , 2002, Chembiochem : a European journal of chemical biology.

[58]  K. Palczewski,et al.  Crystal Structure of Rhodopsin: A G‐Protein‐Coupled Receptor , 2000, Science.

[59]  K. Rabe,et al.  Why are long-acting beta-adrenoceptor agonists long-acting? , 1994, The European respiratory journal.

[60]  P. Goodford A computational procedure for determining energetically favorable binding sites on biologically important macromolecules. , 1985, Journal of medicinal chemistry.

[61]  C. Stevens The acetylcholine receptor , 1980, Nature.