Stress reconfigurable tunable magnetoelectric resonators as magnetic sensors

We report a magnetoelastic effect in doubly clamped ferromagnetic magnetostrictive Metglas resonators with electrically and magnetically reconfigurable frequency response. The field-induced resonance frequency shift is due to magnetostrictive strain, which is shown to have a strong dependence on uniaxial stress. Here, we demonstrate that this magnetic field induced behavior can be used as the basis for a simple, tunable, magnetoelectric magnetic field sensor. The effect of tension on the field dependent magnetostrictive constant and the sensor sensitivity is examined, and the equivalent magnetic noise floor of such a sensor is estimated.

[1]  C. Nan,et al.  Multiferroic Magnetoelectric Composites: Historical Perspective, Status, and Future Directions , 2008, Progress in Advanced Dielectrics.

[2]  S. Dong,et al.  Magnetoelectric Laminate Composites: An Overview , 2008 .

[3]  M. Wuttig,et al.  Magnetoelectric coupling in Terfenol-D/polyvinylidenedifluoride composites , 2002 .

[4]  S. Dong,et al.  Giant magnetoelectric effect in Metglas/polyvinylidene-fluoride laminates , 2006 .

[5]  D. Viehland,et al.  Enhancement in magnetic field sensitivity and reduction in equivalent magnetic noise by magnetoelectric laminate stacks , 2012 .

[6]  S. Dong,et al.  Near-ideal magnetoelectricity in high-permeability magnetostrictive/piezofiber laminates with a (2-1) connectivity , 2006 .

[7]  Dwight D. Viehland,et al.  Fe–Ga/Pb(Mg1/3Nb2/3)O3–PbTiO3 magnetoelectric laminate composites , 2005 .

[8]  S. Dong,et al.  A quasi(unidirectional) Tellegen gyrator , 2006 .

[9]  M. L. Spano,et al.  Magnetostriction and magnetic anisotropy of field annealed Metglas* 2605 alloys via dc M‐H loop measurements under stress , 1982 .

[10]  S. Dong,et al.  Enhanced magnetoelectric effects in laminate composites of Terfenol-D/Pb(Zr,Ti)O3 under resonant drive , 2003 .

[11]  Tae Song Kim,et al.  Effect of mass and stress on resonant frequency shift of functionalized Pb(Zr0.52Ti0.48)O3 thin film microcantilever for the detection of C-reactive protein , 2004 .

[12]  Jonathan E. Fine,et al.  Enhanced sensitivity of magnetoelectric sensors by tuning the resonant frequency , 2011 .

[13]  M. Roukes,et al.  Nanomechanical measurement of magnetostriction and magnetic anisotropy in (Ga,Mn)As. , 2005, Physical review letters.

[14]  Peter Finkel,et al.  Magnetoelastic/piezoelectric laminated structures for tunable remote contact-less magnetic sensing and energy harvesting , 2009 .

[15]  P. Squire Magnetomechanical measurements of magnetically soft amorphous materials , 1994 .

[16]  S. Dong,et al.  Ultrahigh magnetic field sensitivity in laminates of TERFENOL-D and Pb(Mg1/3Nb2/3)O3–PbTiO3 crystals , 2003 .

[17]  David Berry,et al.  An Extremely Low Equivalent Magnetic Noise Magnetoelectric Sensor , 2011, Advanced materials.

[18]  B. Wagner,et al.  Giant magnetoelectric coefficients in (Fe90Co10)78Si12B10-AlN thin film composites , 2010 .

[19]  David Berry,et al.  Enhanced Sensitivity and Reduced Noise Floor in Magnetoelectric Laminate Sensors by an Improved Lamination Process , 2011 .

[20]  S. Dong,et al.  Detection of pico-Tesla magnetic fields using magneto-electric sensors at room temperature , 2006 .

[21]  S. Dong,et al.  Vortex magnetic field sensor based on ring-type magnetoelectric laminate , 2004 .

[22]  S. Mathews,et al.  Fabrication and characterization of all-thin-film magnetoelectric sensors , 2009 .

[23]  S. Lofland,et al.  Enhanced resonant magnetoelectric coupling in frequency-tunable composite multiferroic bimorph structures , 2011 .

[24]  Eckhard Quandt,et al.  Fully integrable magnetic field sensor based on delta-E effect , 2011 .

[25]  J. C. Peuzin,et al.  Magnetostriction and internal stresses in thin films: the cantilever method revisited , 1994 .