Three-dimensional photonic "molecules" from sequentially attached polymer-blend microparticles.

We report the observation of 3D linear or branched chains of polymer-blend microspheres generated from liquid droplets of solution where the modified surface structure of the polymer composite results in highly robust interparticle bonds. Using a linear quadrupole to precisely position particles in space, we are able to take advantage of this novel material property to actively assemble particles in programmable three-dimensional architectures. The robust interlocking nature of interparticle linkage gives rise to strongly coupled morphology-dependent resonances in bisphere and trisphere systems, suggesting the possibility of three-dimensional photonic "molecules" and microscale optical manipulation applications.