Nonlinear Spectral Analysis via One-Homogeneous Functionals: Overview and Future Prospects

We present in this paper the motivation and theory of nonlinear spectral representations, based on convex regularizing functionals. Some comparisons and analogies are drawn to the fields of signal processing, harmonic analysis, and sparse representations. The basic approach, main results, and initial applications are shown. A discussion of open problems and future directions concludes this work.

[1]  Eitan Tadmor,et al.  A Multiscale Image Representation Using Hierarchical (BV, L2 ) Decompositions , 2004, Multiscale Model. Simul..

[2]  Michael Möller,et al.  Learning Nonlinear Spectral Filters for Color Image Reconstruction , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[3]  Matthias Hein,et al.  An Inverse Power Method for Nonlinear Eigenproblems with Applications in 1-Spectral Clustering and Sparse PCA , 2010, NIPS.

[4]  Matthias Hein,et al.  Nonlinear Eigenproblems in Data Analysis - Balanced Graph Cuts and the RatioDCA-Prox , 2013, ArXiv.

[5]  A. Chambolle Practical, Unified, Motion and Missing Data Treatment in Degraded Video , 2004, Journal of Mathematical Imaging and Vision.

[6]  Otmar Scherzer,et al.  Inverse Total Variation Flow , 2007, Multiscale Model. Simul..

[7]  Thomas Brox,et al.  On the Equivalence of Soft Wavelet Shrinkage, Total Variation Diffusion, Total Variation Regularization, and SIDEs , 2004, SIAM J. Numer. Anal..

[8]  M. Novaga,et al.  The Total Variation Flow in RN , 2002 .

[9]  Michael Möller,et al.  Collaborative Total Variation: A General Framework for Vectorial TV Models , 2015, SIAM J. Imaging Sci..

[10]  Otmar Scherzer,et al.  Exact Solutions of One-Dimensional TGV , 2013, 1309.7152.

[11]  Jahn Müller,et al.  Higher-Order TV Methods—Enhancement via Bregman Iteration , 2012, Journal of Scientific Computing.

[12]  Ullrich Köthe,et al.  Local Appropriate Scale in Morphological Scale-Space , 1996, ECCV.

[13]  K. Bredies,et al.  A study of the one dimensional total generalised variation regularisation problem , 2013, 1309.5900.

[14]  Nicolas Papadakis,et al.  Fundamentals of Non-Local Total Variation Spectral Theory , 2015, SSVM.

[15]  Martin Burger,et al.  Ground States and Singular Vectors of Convex Variational Regularization Methods , 2012, 1211.2057.

[16]  S. Osher,et al.  Decomposition of images by the anisotropic Rudin‐Osher‐Fatemi model , 2004 .

[17]  Ulrike von Luxburg,et al.  A tutorial on spectral clustering , 2007, Stat. Comput..

[18]  Arthur D. Szlam,et al.  Total variation and cheeger cuts , 2010, ICML 2010.

[19]  Daniel Cremers,et al.  An algorithm for minimizing the Mumford-Shah functional , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[20]  Joachim Weickert,et al.  Anisotropic diffusion in image processing , 1996 .

[21]  Arthur D. Szlam,et al.  A Total Variation-based Graph Clustering Algorithm for Cheeger Ratio Cuts , 2009 .

[22]  M. R. Osborne,et al.  A new approach to variable selection in least squares problems , 2000 .

[23]  Tom Goldstein,et al.  The Split Bregman Method for L1-Regularized Problems , 2009, SIAM J. Imaging Sci..

[24]  Ricardo H. Nochetto,et al.  Discrete Total Variation Flows without Regularization , 2012, SIAM J. Numer. Anal..

[25]  Xavier Bresson,et al.  Total Variation, Cheeger Cuts , 2010, ICML.

[26]  Guy Gilboa,et al.  A Total Variation Spectral Framework for Scale and Texture Analysis , 2014, SIAM J. Imaging Sci..

[27]  Gjlles Aubert,et al.  Mathematical problems in image processing , 2001 .

[28]  Otmar Scherzer,et al.  Tube Methods for BV Regularization , 2003, Journal of Mathematical Imaging and Vision.

[29]  Matthias Hein,et al.  Constrained 1-Spectral Clustering , 2012, AISTATS.

[30]  Charles K. Chui,et al.  An Introduction to Wavelets , 1992 .

[31]  Antonin Chambolle,et al.  Image Decomposition into a Bounded Variation Component and an Oscillating Component , 2005, Journal of Mathematical Imaging and Vision.

[32]  ANTONIN CHAMBOLLE,et al.  An Algorithm for Total Variation Minimization and Applications , 2004, Journal of Mathematical Imaging and Vision.

[33]  J. Moreau Proximité et dualité dans un espace hilbertien , 1965 .

[34]  Michael Möller,et al.  An adaptive inverse scale space method for compressed sensing , 2012, Math. Comput..

[35]  Guy Gilboa,et al.  Separation Surfaces in the Spectral TV Domain for Texture Decomposition , 2015, IEEE Transactions on Image Processing.

[36]  Jesús Ildefonso Díaz Díaz,et al.  Some qualitative properties for the total variation flow , 2002 .

[37]  Yves Meyer,et al.  Oscillating Patterns in Image Processing and Nonlinear Evolution Equations: The Fifteenth Dean Jacqueline B. Lewis Memorial Lectures , 2001 .

[38]  Guy Gilboa,et al.  A Spectral Approach to Total Variation , 2013, SSVM.

[39]  Xavier Bresson,et al.  Convergence and Energy Landscape for Cheeger Cut Clustering , 2012, NIPS.

[40]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[41]  Michael Möller,et al.  Spectral Representations of One-Homogeneous Functionals , 2015, SSVM.

[42]  C. K. Yuen,et al.  Theory and Application of Digital Signal Processing , 1978, IEEE Transactions on Systems, Man, and Cybernetics.

[43]  Karl Kunisch,et al.  Total Generalized Variation , 2010, SIAM J. Imaging Sci..

[44]  A. Hero,et al.  A Fast Spectral Method for Active 3D Shape Reconstruction , 2004 .

[45]  M. Belloni,et al.  Isoperimetric inequalities, Wulff shape and related questions for strongly nonlinear elliptic operators , 2003 .

[46]  Laurent Condat,et al.  A Direct Algorithm for 1-D Total Variation Denoising , 2013, IEEE Signal Processing Letters.

[47]  Yoshikazu Giga,et al.  Scale-Invariant Extinction Time Estimates for Some Singular Diffusion Equations , 2010 .

[48]  Antonin Chambolle,et al.  A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging , 2011, Journal of Mathematical Imaging and Vision.

[49]  J. Weickert,et al.  Locally analytic schemes: A link between diffusion filtering and wavelet shrinkage , 2008 .

[50]  Jérôme Gilles,et al.  Multiscale Texture Separation , 2012, Multiscale Model. Simul..

[51]  Michael Möller,et al.  Spectral Decompositions Using One-Homogeneous Functionals , 2016, SIAM J. Imaging Sci..

[52]  Wotao Yin,et al.  The Total Variation Regularized L1 Model for Multiscale Decomposition , 2007, Multiscale Model. Simul..

[53]  Guy Gilboa,et al.  Multiscale Texture Orientation Analysis Using Spectral Total-Variation Decomposition , 2015, SSVM.

[54]  V. Caselles,et al.  Minimizing total variation flow , 2000, Differential and Integral Equations.

[55]  Leo Dorst,et al.  Morphological signal processing and the slope transform , 1994, Signal Process..

[56]  Jérôme Darbon,et al.  Image Restoration with Discrete Constrained Total Variation Part I: Fast and Exact Optimization , 2006, Journal of Mathematical Imaging and Vision.

[57]  S. Osher,et al.  Nonlinear inverse scale space methods , 2006 .

[58]  P. Lions,et al.  Image recovery via total variation minimization and related problems , 1997 .