Overlapping functions of components of a bacterial Sec‐independent protein export pathway

We describe the identification of two Escherichia coli genes required for the export of cofactor‐containing periplasmic proteins, synthesized with signal peptides containing a twin arginine motif. Both gene products are homologous to the maize HCF106 protein required for the translocation of a subset of lumenal proteins across the thylakoid membrane. Disruption of either gene affects the export of a range of such proteins, and a complete block is observed when both genes are inactivated. The Sec protein export pathway was unaffected, indicating the involvement of the gene products in a novel export system. The accumulation of active cofactor‐containing proteins in the cytoplasm of the mutant strains suggests a role for the gene products in the translocation of folded proteins. One of the two HCF106 homologues is encoded by the first gene of a four cistron operon, tatABCD, and the second by an unlinked gene, tatE. A mutation previously assigned to the hcf106 homologue encoded at the tatABCD locus, mttA, lies instead in the tatB gene.

[1]  R. Gunsalus,et al.  Identification of a second gene involved in global regulation of fumarate reductase and other nitrate-controlled genes for anaerobic respiration in Escherichia coli , 1989, Journal of bacteriology.

[2]  K. Cline,et al.  Evidence for a loop mechanism of protein transport by the thylakoid Delta pH pathway , 1998, FEBS letters.

[3]  P. Garland,et al.  Sites and specificity of the reaction of bipyridylium compounds with anaerobic respiratory enzymes of Escherichia coli. Effects of permeability barriers imposed by the cytoplasmic membrane. , 1977, The Biochemical journal.

[4]  E. L. Barrett,et al.  Bacterial reduction of trimethylamine oxide. , 1985, Annual review of microbiology.

[5]  J. Weiner,et al.  A Novel and Ubiquitous System for Membrane Targeting and Secretion of Cofactor-Containing Proteins , 1998, Cell.

[6]  H. Towbin,et al.  Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[7]  W. Zumft,et al.  Sequence analysis of an internal 9.72-kb segment from the 30-kb denitrification gene cluster of Pseudomonas stutzeri. , 1996, Biochimica et biophysica acta.

[8]  C. Richardson,et al.  A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[9]  G. Voordouw,et al.  Site-directed mutagenesis of the hydrogenase signal peptide consensus box prevents export of a beta-lactamase fusion protein. , 1992, Journal of general microbiology.

[10]  S. Cohen,et al.  Lactose genes fused to exogenous promoters in one step using a Mu-lac bacteriophage: in vivo probe for transcriptional control sequences. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[11]  B. Berks A common export pathway for proteins binding complex redox cofactors? , 1996, Molecular microbiology.

[12]  J E Gander,et al.  Mechanism of assembly of the outer membrane of Salmonella typhimurium. Isolation and characterization of cytoplasmic and outer membrane. , 1972, The Journal of biological chemistry.

[13]  S. Brink,et al.  Pathway specificity for a ΔpH‐dependent precursor thylakoid lumen protein is governed by a 'sec‐avoidance’ motif in the transfer peptide and a 'sec‐incompatible’ mature protein , 1997, The EMBO journal.

[14]  J. Weiner,et al.  Molecular analysis of dimethylsulfoxide reductase: a complex iron-sulfur molybdoenzyme of Escherichia coli. , 1992, Biochimica et biophysica acta.

[15]  M. Mandrand-Berthelot,et al.  THE SYNTHESIS OF FORMATE DEHYDROGENASE AND NITRATE REDUCTASE PROTEINS IN VARIOUS fdb AND cbl MUTANTS OF ESCHERICHIA COLI , 1980 .

[16]  B. Washburn,et al.  New method for generating deletions and gene replacements in Escherichia coli , 1989, Journal of bacteriology.

[17]  A. Pugsley The complete general secretory pathway in gram-negative bacteria. , 1993, Microbiological reviews.

[18]  G. Giordano,et al.  TMAO anaerobic respiration in Escherichia coli: involvement of the tor operon , 1994, Molecular microbiology.

[19]  H. D. Peck,et al.  Carboxy‐terminal processing of the large subunit of [NiFe] hydrogenases , 1993, FEBS letters.

[20]  N. Zinder,et al.  The genetic map of the filamentous bacteriophage f1. , 1972, Virology.

[21]  G. Giordano,et al.  A novel Sec‐independent periplasmic protein translocation pathway in Escherichia coli , 1998, The EMBO journal.

[22]  D. Kendall,et al.  Signal peptides: exquisitely designed transport promoters , 1994, Molecular microbiology.

[23]  L. Wu,et al.  Requirement for nickel of the transmembrane translocation of NiFe‐hydrogenase 2 in Escherichia coli , 1996, FEBS letters.

[24]  V. Stewart,et al.  Structural genes for nitrate-inducible formate dehydrogenase in Escherichia coli K-12. , 1990, Genetics.

[25]  B. Dobberstein,et al.  Common Principles of Protein Translocation Across Membranes , 1996, Science.

[26]  R. Herrmann,et al.  A new type of signal peptide: central role of a twin‐arginine motif in transfer signals for the delta pH‐dependent thylakoidal protein translocase. , 1995, The EMBO journal.

[27]  K. M. Dolan,et al.  Azide-resistant mutants of Escherichia coli alter the SecA protein, an azide-sensitive component of the protein export machinery. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[28]  B. Mccarthy,et al.  The specificity of molecular hybridization reactions. , 1970, Annual review of biochemistry.

[29]  U. K. Laemmli,et al.  Form-determining function of the genes required for the assembly of the head of bacteriophage T4. , 1970, Journal of molecular biology.

[30]  D. Boxer,et al.  Nickel-containing hydrogenase isoenzymes from anaerobically grown Escherichia coli K-12 , 1985, Journal of bacteriology.

[31]  A. Mant,et al.  A Monomeric, Tightly Folded Stromal Intermediate on the pH-dependent Thylakoidal Protein Transport Pathway (*) , 1995, The Journal of Biological Chemistry.

[32]  A. Barkan,et al.  Two nuclear mutations disrupt distinct pathways for targeting proteins to the chloroplast thylakoid. , 1995, The EMBO journal.

[33]  S. Theg,et al.  A folded protein can be transported across the chloroplast envelope and thylakoid membranes. , 1997, Molecular biology of the cell.

[34]  G von Heijne,et al.  Signal sequences. The limits of variation. , 1985, Journal of molecular biology.

[35]  N. W. Davis,et al.  The complete genome sequence of Escherichia coli K-12. , 1997, Science.

[36]  U. K. Laemmli,et al.  Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4 , 1970, Nature.

[37]  F. Blattner,et al.  Analysis of the Escherichia coli genome: DNA sequence of the region from 84.5 to 86.5 minutes. , 1992, Science.

[38]  S. Cole,et al.  Nucleotide sequence of the dmsABC operon encoding the anaerobic dimethylsulphoxide reductase of Escherichia coli , 1988, Molecular microbiology.

[39]  H. Enoch,et al.  The purification and properties of formate dehydrogenase and nitrate reductase from Escherichia coli. , 1975, The Journal of biological chemistry.

[40]  R. Herrmann,et al.  Protein import into chloroplasts. The hydrophilic lumenal proteins exhibit unexpected import and sorting specificities in spite of structurally conserved transit peptides. , 1993, The Journal of biological chemistry.

[41]  T. Atlung,et al.  Anaerobic regulation of the hydrogenase 1 (hya) operon of Escherichia coli , 1994, Journal of bacteriology.

[42]  K. Novak The complete genome sequence… , 1998, Nature Medicine.

[43]  D. Boxer,et al.  Reassignment of the gene encoding the Escherichia coli hydrogenase 2 small subunit--identification of a soluble precursor of the small subunit in a hypB mutant. , 1998, European journal of biochemistry.

[44]  T. Atlung,et al.  Isolation, characterization, and nucleotide sequence of appY, a regulatory gene for growth-phase-dependent gene expression in Escherichia coli , 1989, Journal of bacteriology.

[45]  O. H. Lowry,et al.  Protein measurement with the Folin phenol reagent. , 1951, The Journal of biological chemistry.

[46]  A. Mant,et al.  Targeting of proteins into and across the thylakoid membrane , 1997 .

[47]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .

[48]  A. Böck,et al.  Characterisation of a protease from Escherichia coli involved in hydrogenase maturation. , 1995, European journal of biochemistry.

[49]  R. Roffey,et al.  Analysis of the Import of Carboxyl-Terminal Truncations of the 23-Kilodalton Subunit of the Oxygen-Evolving Complex Suggests That Its Structure Is an Important Determinant for Thylakoid Transport , 1996, Plant physiology.

[50]  R. Kemp,et al.  Detection of Actomyosin-type Protein at the Surface of Dissociated Embryonic Chick Cells , 1970, Nature.

[51]  M. Quail,et al.  A 12-cistron Escherichia coli operon (hyf) encoding a putative proton-translocating formate hydrogenlyase system. , 1997, Microbiology.

[52]  G. Giordano,et al.  The inducible trimethylamine-N-oxide reductase of Escherichia coli K12: biochemical and immunological studies. , 1988, Biochimica et biophysica acta.

[53]  D. Bush,et al.  Sec-independent protein translocation by the maize Hcf106 protein. , 1997, Science.

[54]  R. Sawers,et al.  Differential expression of hydrogenase isoenzymes in Escherichia coli K-12: evidence for a third isoenzyme , 1985, Journal of bacteriology.

[55]  P. Rather,et al.  Identification and Characterization ofaarF, a Locus Required for Production of Ubiquinone inProvidencia stuartii and Escherichia coli and for Expression of 2′-N-Acetyltransferase inP. stuartii , 1998 .

[56]  Lack of copper insertion into unprocessed cytoplasmic nitrous oxide reductase generated by an R20D substitution in the arginine consensus motif of the signal peptide. , 1997, Biochimica et biophysica acta.

[57]  J. Weiner,et al.  Dimethyl sulfoxide reductase activity by anaerobically grown Escherichia coli HB101 , 1985, Journal of bacteriology.

[58]  N. Harboe,et al.  23. Immunization, Isolation of Immunoglobulins, Estimation of Antibody Titre , 1973, Scandinavian journal of immunology. Supplement.

[59]  J. Heider,et al.  Nitrate-inducible formate dehydrogenase in Escherichia coli K-12. I. Nucleotide sequence of the fdnGHI operon and evidence that opal (UGA) encodes selenocysteine. , 1991, The Journal of biological chemistry.

[60]  P. Rather,et al.  Identification and characterization of aarF, a locus required for production of ubiquinone in Providencia stuartii and Escherichia coli and for expression of 2'-N-acetyltransferase in P. stuartii. , 1998, Journal of bacteriology.

[61]  H. D. Peck,et al.  Cloning and sequencing of a putative Escherichia coli [NiFe] hydrogenase-1 operon containing six open reading frames , 1990, Journal of bacteriology.

[62]  A. Hochkoeppler,et al.  Functional and structural role of the cytochrome b subunit of the membrane-bound hydrogenase complex of Alcaligenes eutrophus H16. , 1997, European journal of biochemistry.

[63]  M. J. Bailey,et al.  RfaH and the ops element, components of a novel system controlling bacterial transcription elongation , 1997, Molecular microbiology.