Designs for high-efficiency electrically pumped photonic nanowire single-photon sources.

We propose and analyze three electrically-pumped nanowire single-photon source structures, which achieve output efficiencies of more than 80%. These structures are based on a quantum dot embedded in a photonic nanowire with carefully tailored ends and optimized contact electrodes. Contrary to conventional cavity-based sources, this non-resonant approach provides broadband spontaneous emission control and features an improved fabrication tolerance towards surface roughness and imperfections. Using an element-splitting approach, we analyze the various building blocks of the designs with respect to realistic variations of the experimental fabrication parameters.

[1]  E. Costard,et al.  Enhanced Spontaneous Emission by Quantum Boxes in a Monolithic Optical Microcavity , 1998 .

[2]  Christian Schneider,et al.  Electrically driven quantum dot-micropillar single photon source with 34% overall efficiency , 2010 .

[3]  D. A. Ritchie,et al.  Interference of dissimilar photon sources , 2009, 1006.0820.

[4]  A J Shields,et al.  Postselective two-photon interference from a continuous nonclassical stream of photons emitted by a quantum dot. , 2008, Physical review letters.

[5]  S. Hughes,et al.  Single quantum-dot Purcell factor and β factor in a photonic crystal waveguide , 2007 .

[6]  Jesper Mørk,et al.  An improved perfectly matched layer for the eigenmode expansion technique , 2008 .

[7]  Jean-Paul Hugonin,et al.  Very Large Spontaneous-Emission β Factors in Photonic-Crystal Waveguides , 2007 .

[8]  Jesper Mørk,et al.  Quality factors of nonideal micro pillars , 2007 .

[9]  Jelena Vucković,et al.  Efficient source of single photons: a single quantum dot in a micropost microcavity. , 2002, Physical review letters.

[10]  K. Vahala Optical microcavities : Photonic technologies , 2003 .

[11]  Michael Pepper,et al.  Electrically Driven Single-Photon Source , 2001, Science.

[12]  Marko Loncar,et al.  Submicrometer diameter micropillar cavities with high quality factor and ultrasmall mode volume. , 2009, Optics letters.

[13]  Jean-Michel Gérard,et al.  A single-mode solid-state source of single photons based on isolated quantum dots in a micropillar , 2002 .

[14]  H Germany,et al.  Experimental realization of highly efficient broadband coupling of single quantum dots to a photonic crystal waveguide. , 2008, Physical review letters.

[15]  A. Shields Semiconductor quantum light sources , 2007, 0704.0403.

[16]  F Schmidt,et al.  Dependencies of micro-pillar cavity quality factors calculated with finite element methods. , 2009, Optics express.

[17]  R. J. Bell,et al.  Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared. , 1983, Applied optics.

[18]  A. Auffèves,et al.  Pure emitter dephasing: A resource for advanced solid-state single-photon sources , 2008, 0808.0820.

[19]  J. C. Roustan,et al.  Fabrication and characterization of ITO thin films deposited by excimer laser evaporation , 1996 .

[20]  Jonathan Finley,et al.  Explanation of photon correlations in the far-off-resonance optical emission from a quantum-dot-cavity system. , 2009, Physical review letters.

[21]  William L. Barnes,et al.  Solid-state single photon sources: light collection strategies , 2002 .

[22]  T Bååk,et al.  Silicon oxynitride; a material for GRIN optics. , 1982, Applied optics.

[23]  Yasuhiko Arakawa,et al.  Exciton dynamics in current-injected single quantum dot at 1.55μm , 2008 .

[24]  A. Laucht,et al.  Phonon-assisted transitions from quantum dot excitons to cavity photons , 2009, 0910.3749.

[25]  T. Suhr,et al.  Influence of pure dephasing on emission spectra from single photon sources , 2008, 0807.3589.

[26]  P. Hemmer,et al.  A diamond nanowire single-photon source. , 2009, Nature nanotechnology.

[27]  K. Vahala Optical microcavities , 2003, Nature.

[28]  Dirk Englund,et al.  Low-threshold surface-passivated photonic crystal nanocavity laser , 2007 .

[29]  C. Ning,et al.  Distribution of optical emission between guided modes and free space in a semiconductor nanowire , 2006 .

[30]  H. Sigg,et al.  The refractive index of AlxGa1−xAs below the band gap: Accurate determination and empirical modeling , 2000 .

[32]  Jen-Inn Chyi,et al.  Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities. , 2006, Physical review letters.

[33]  D. Ritchie,et al.  An entangled-light-emitting diode , 2010, Nature.

[34]  G. Sęk,et al.  Strong coupling in a single quantum dot semiconductor microcavity system , 2006, SPIE OPTO.

[35]  Harry A Atwater,et al.  Broadband enhancement of light emission in silicon slot waveguides. , 2009, Optics express.

[36]  Roel Baets,et al.  Optical modelling of photonic crystals and VCSELs using eigenmode expansion and perfectly matched layers , 2001 .

[37]  S. Reitzenstein,et al.  Photon antibunching from a single quantum dot-microcavity system in the strong coupling regime , 2007, 2007 European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference.

[38]  Yoshihisa Yamamoto,et al.  Efficient source of single photons: a single quantum dot in a micropost microcavity. , 2002 .

[39]  Philippe Lalanne,et al.  A novel high-efficiency single-mode single photon source , 2007 .

[40]  Larry A. Coldren,et al.  High-frequency single-photon source with polarization control , 2007 .

[41]  A. K. Kalagin,et al.  Electrically driven single quantum dot polarised single photon emitter , 2006 .

[42]  K. Sanaka,et al.  Indistinguishable photons from independent semiconductor nanostructures. , 2009, Physical review letters.

[43]  N. Gregersen,et al.  A highly efficient single-photon source based on a quantum dot in a photonic nanowire , 2010 .

[44]  J. Mørk,et al.  Controlling the emission profile of a nanowire with a conical taper. , 2008, Optics letters.

[45]  P Lalanne,et al.  Efficient photonic mirrors for semiconductor nanowires. , 2008, Optics letters.

[46]  Chu,et al.  Photonic-wire laser. , 1995, Physical review letters.

[47]  Costas Fotakis,et al.  LASERS, OPTICS, AND OPTOELECTRONICS 2865 Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities , 2001 .

[48]  Yasuhiko Arakawa,et al.  First Demonstration of Electrically Driven 1.55 µm Single-Photon Generator , 2007 .

[49]  P Lalanne,et al.  Solid-state single photon sources: the nanowire antenna. , 2009, Optics express.

[50]  L. Grenouillet,et al.  Electrically driven high-Q quantum dot-micropillar cavities , 2008, 2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science.

[51]  H. C. Casey,et al.  Concentration dependence of the absorption coefficient for n− and p−type GaAs between 1.3 and 1.6 eV , 1975 .