Catalyst-free growth of millimeter-long topological insulator Bi₂Se₃ nanoribbons and the observation of the π-Berry phase.

We report the growth of single-crystalline Bi(2)Se(3) nanoribbons with lengths up to several millimeters via a catalyst-free physical vapor deposition method. Scanning transmission electron microscopy analysis reveals that the nanoribbons grow along the (112̅0) direction. We obtain a detailed characterization of the electronic structure of the Bi(2)Se(3) nanoribbons from measurements of Shubnikov-de Haas (SdH) quantum oscillations. Angular dependent magneto-transport measurements reveal a dominant two-dimensional contribution originating from surface states. The catalyst-free synthesis yields high-purity nanocrystals enabling the observation of a large number of SdH oscillation periods and allowing for an accurate determination of the π-Berry phase, one of the key features of Dirac fermions in topological insulators. The long-length nanoribbons open the possibility for fabricating multiple nanoelectronic devices on a single nanoribbon.

[1]  G. Mikitik,et al.  Berry phase and the phase of the Shubnikov-de Haas oscillations in three-dimensional topological insulators , 2011, 1110.3106.

[2]  Mark Schvartzman,et al.  Guided Growth of Millimeter-Long Horizontal Nanowires with Controlled Orientations , 2011, Science.

[3]  Y. Ando,et al.  Berry phase of nonideal Dirac fermions in topological insulators , 2011, 1103.3096.

[4]  A. Morpurgo,et al.  Gate-tuned normal and superconducting transport at the surface of a topological insulator , 2011, Nature communications.

[5]  Richard L J Qiu,et al.  Two-dimensional transport-induced linear magneto-resistance in topological insulator Bi2Se3 nanoribbons. , 2011, ACS nano.

[6]  James Analytis,et al.  Two-dimensional surface state in the quantum limit of a topological insulator , 2010 .

[7]  Yoichi Ando,et al.  Large bulk resistivity and surface quantum oscillations in the topological insulator Bi 2 Te 2 Se , 2010, 1011.2846.

[8]  N. P. Ong,et al.  Quantum Oscillations and Hall Anomaly of Surface States in the Topological Insulator Bi2Te3 , 2010, Science.

[9]  Yi Cui,et al.  Ultrathin topological insulator Bi2Se3 nanoribbons exfoliated by atomic force microscopy. , 2010, Nano letters.

[10]  Andrei B. Sushkov,et al.  Strong surface scattering in ultrahigh mobility Bi2Se3 topological insulator crystals , 2010, 1003.2382.

[11]  C. Kane,et al.  Topological Insulators , 2019, Electromagnetic Anisotropy and Bianisotropy.

[12]  Z. Ren,et al.  Angular-dependent oscillations of the magnetoresistance in Bi 2 Se 3 due to the three-dimensional bulk Fermi surface , 2010, 1001.5353.

[13]  Yi Cui,et al.  Magnetic doping and kondo effect in bi(2)se(3) nanoribbons. , 2010, Nano letters.

[14]  Ross D. McDonald,et al.  Bulk Fermi surface coexistence with Dirac surface state in Bi 2 Se 3 : A comparison of photoemission and Shubnikov–de Haas measurements , 2010, 1001.4050.

[15]  Zhi-Xun Shen,et al.  Topological insulator nanowires and nanoribbons. , 2009, Nano letters.

[16]  Xiao-Liang Qi,et al.  Aharonov-Bohm interference in topological insulator nanoribbons. , 2009, Nature materials.

[17]  Xi Dai,et al.  Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface , 2009 .

[18]  R. Cava,et al.  Observation of a large-gap topological-insulator class with a single Dirac cone on the surface , 2009 .

[19]  L. Taillefer,et al.  Quantum oscillations in underdoped YBa2Cu3O6.5 , 2009, 1001.1508.

[20]  Bozhi Tian,et al.  Controlled synthesis of millimeter-long silicon nanowires with uniform electronic properties. , 2008, Nano letters.

[21]  Peng Wang,et al.  High-resolution detection of Au catalyst atoms in Si nanowires. , 2008, Nature nanotechnology.

[22]  L. Fu,et al.  Superconducting proximity effect and majorana fermions at the surface of a topological insulator. , 2007, Physical review letters.

[23]  P. Kim,et al.  Experimental observation of the quantum Hall effect and Berry's phase in graphene , 2005, Nature.

[24]  C. Kane,et al.  Z2 topological order and the quantum spin Hall effect. , 2005, Physical review letters.

[25]  Charles M. Lieber,et al.  Functional nanoscale electronic devices assembled using silicon nanowire building blocks. , 2001, Science.

[26]  Charles M. Lieber,et al.  Doping and Electrical Transport in Silicon Nanowires , 2000 .

[27]  J. Jumas,et al.  X-ray Diffraction and (119)Sn Mössbauer Spectroscopy Study of a New Phase in the Bi(2)Se(3)-SnSe System: SnBi(4)Se(7). , 1999, Inorganic chemistry.

[28]  G. Mikitik,et al.  Manifestation of Berry's Phase in Metal Physics , 1999 .

[29]  A. Isihara,et al.  Density and magnetic field dependences of the conductivity of two-dimensional electron systems , 1986 .

[30]  D. Shoenberg,et al.  Magnetic Oscillations in Metals , 1984 .

[31]  M. Berry Quantal phase factors accompanying adiabatic changes , 1984, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.