Application of the Positive Reality Principle to Metal Electrode Linear Polarization Phenomena

The linear electrode-electrolyte polarization immittance (impedance or admittance) can be analyzed by the fractional power pole (FPP) model [38] based on the modification of Bode's [4] method to include functions with poles and/or zeros of fractional power. This is, in essence, an extension of the Davidson-Cole model [12] to the entire frequency spectrum. In this paper, the minimum phase property of the FPP model is verified and the positive reality principle [5] is used to identify the specific type of immittance function for which the FPP model is applicable. This condition is an extension of the "universal" law of dielectric response as advanced by Jonscher [26].

[1]  E. Guillemin The mathematics of circuit analysis , 1965 .

[2]  Robert Kennedy L. Chemical analysis of an uncommon species of zeolite , 1803 .

[3]  B. Onaral,et al.  Linear approximation of transfer function with a pole of fractional power , 1984 .

[4]  K. S. Shanmugam,et al.  Determination of a transfer function from amplitude frequency response data , 1977 .

[5]  R. Cole,et al.  Dielectric Relaxation in Glycerine , 1950 .

[6]  Claude Gabrielli,et al.  Progres recents dans la mesure des impedances electrochimiques en regime sinusoidal , 1974 .

[7]  K. Cole,et al.  Dispersion and Absorption in Dielectrics I. Alternating Current Characteristics , 1941 .

[8]  F. A. Grant Use of Complex Conductivity in the Representation of Dielectric Phenomena , 1958 .

[9]  J R Bourne,et al.  Identification and labeling of EEG graphic elements using autoregressive spectral estimates. , 1982, Computers in biology and medicine.

[10]  A. Jonscher,et al.  Physical basis of dielectric loss , 1975, Nature.

[11]  S. Deutsch Synthesis of transfer function of a physiological system given magnitude or phase response , 1977, Proceedings of the IEEE.

[12]  Banu Onaral,et al.  A Unified Approach to Represent Metal Electrode Polarization , 1983, IEEE Transactions on Biomedical Engineering.

[13]  E. Warburg,et al.  Ueber die Polarisationscapacität des Platins , 1901 .

[14]  H. W. Nürnberg,et al.  Arbeitsmethoden und anwendungen der gleichspannungspolarographie: IV. Doppelschicht-, adsorptions- und inhibitionseffekte , 1962 .

[15]  H. Fricke,et al.  XXXIII. The theory of electrolytic polarization , 1932 .

[16]  M. E. Baird,et al.  Determination of Dielectric Behavior at Low Frequencies from Measurements of Anomalous Charging and Discharging Currents , 1968 .

[17]  Banu Onaral METAL BIOELECTRODE POLARIZATION: A FREQUENCY AND TIME DOMAIN ANALYSIS. , 1978 .

[18]  N. Wiener,et al.  Nonlinear Problems in Random Theory , 1964 .

[19]  H P Schwan,et al.  Alternating current electrode polarization , 1966, Biophysik.

[20]  A. K. Jonscher,et al.  The ‘universal’ dielectric response , 1977, Nature.

[21]  Van Valkenburg,et al.  Introduction to Modern Network Synthesis , 1960 .

[22]  K. B. Oldham Theory of Faradaic Distortion , 1960 .

[23]  H P Schwan,et al.  ELECTRODE POLARIZATION IMPEDANCE AND MEASUREMENTS IN BIOLOGICAL MATERIALS * , 1968, Annals of the New York Academy of Sciences.

[24]  Mekki Ksouri,et al.  Compensation de la chute ohmique par une methode analogique.: Application a la mesure des impedances electrochimiques et a la determination des courbes de polarisation , 1977 .

[25]  A. Mauro Anomalous impedance, a phenomenological property of time-variant resistance. An analytic review. , 1961, Biophysical journal.

[26]  O. Brune Synthesis of a finite two-terminal network whose driving-point impedance is a prescribed function of frequency , 1931 .

[27]  J. C. Lestrade,et al.  Faradaic impedances and intermediates in electrochemical reactions , 1973 .

[28]  H. Böhni,et al.  Computer-assisted D.C. and A.C. techniques in electrochemical investigations of the active-passive transition , 1983 .

[29]  J W Ward,et al.  Quantitative assessment of the electroencephalogram in renal disease. , 1975, Electroencephalography and clinical neurophysiology.