Can spectral value sets of Toeplitz band matrices jump ?

The spectral value set sp B,C ε A of a bounded linear operator A on l2 is the union of the spectra of all operators of the form A+ BKC, where‖K‖ < ε andB,C are fixed bounded linear operators. It turns out that small changes of ε may cause drastic changes of the set sp ε A. We conjecture that this can never happen if B or C is compact andA is given by an infinite Toeplitz band matrix. In the present paper, this conjecture is proved for certain interesting operators B and C and for several classes of Toeplitz band matrices, including Hessenberg matrices and matrices of small bandwidth. Our approach is based on working with the monodromy group of the Riemann surface associated with the generating function of the matrix. © 2002 Elsevier Science Inc. All rights reserved. AMS classification: Primary: 47B35; Secondary: 15A18; 30F10; 93B03; 93D09

[1]  Spectral curves of non-hermitian hamiltonians , 1997, cond-mat/9710040.

[2]  I. Goldsheid,et al.  DISTRIBUTION OF EIGENVALUES IN NON-HERMITIAN ANDERSON MODELS , 1997, cond-mat/9707230.

[3]  Lloyd N. Trefethen,et al.  Pseudospectra of Linear Operators , 1997, SIAM Rev..

[4]  A. Harrabi Pseudospectre d'une suite d'opérateurs bornés , 1998 .

[5]  E. Davies,et al.  Pseudospectra of differential operators , 2000 .

[6]  Non-Hermitian localization and delocalization. , 1997, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[7]  I. Gohberg,et al.  Convolution Equations and Projection Methods for Their Solution , 1974 .

[8]  W. Hayman,et al.  COMPLEX FUNCTIONS An Algebraic and Geometric Viewpoint , 1988 .

[9]  D. Hinrichsen,et al.  Real and Complex Stability Radii: A Survey , 1990 .

[10]  Frank Spitzer,et al.  The Toeplitz Matrices of an Arbitrary Laurent Polynomial. , 1960 .

[11]  A. Böttcher Pseudospectra and Singular Values of Large Convolution Operators , 1994 .

[12]  A. Böttcher,et al.  Norms of Inverses, Spectra, and Pseudospectra of Large Truncated Wiener-Hopf Operators and Toeplitz Matrices , 1997 .

[13]  Diederich Hinrichsen,et al.  Spectral value sets: a graphical tool for robustness analysis , 1993 .

[14]  A. Harrabi Pseudospectres d'opérateurs intégraux et différentiels : application à la physique mathématique , 1998 .

[15]  Mark Embree,et al.  Infinite Toeplitz and Laurent matrices with localized impurities , 2002 .

[16]  E. Gallestey,et al.  Spectral value sets of closed linear operators , 2000, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[17]  A. Böttcher,et al.  Introduction to Large Truncated Toeplitz Matrices , 1998 .

[18]  Spectral properties of random non-self-adjoint matrices and operators , 2000, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[19]  David R. Nelson,et al.  Vortex pinning and non-Hermitian quantum mechanics , 1997 .

[20]  L. Trefethen,et al.  Spectra, pseudospectra, and localization for random bidiagonal matrices , 2000, cond-mat/0003514.

[21]  David R. Nelson,et al.  NON-HERMITIAN LOCALIZATION AND POPULATION BIOLOGY , 1997, cond-mat/9708071.