Can spectral value sets of Toeplitz band matrices jump ?
暂无分享,去创建一个
[1] Spectral curves of non-hermitian hamiltonians , 1997, cond-mat/9710040.
[2] I. Goldsheid,et al. DISTRIBUTION OF EIGENVALUES IN NON-HERMITIAN ANDERSON MODELS , 1997, cond-mat/9707230.
[3] Lloyd N. Trefethen,et al. Pseudospectra of Linear Operators , 1997, SIAM Rev..
[4] A. Harrabi. Pseudospectre d'une suite d'opérateurs bornés , 1998 .
[5] E. Davies,et al. Pseudospectra of differential operators , 2000 .
[6] Non-Hermitian localization and delocalization. , 1997, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[7] I. Gohberg,et al. Convolution Equations and Projection Methods for Their Solution , 1974 .
[8] W. Hayman,et al. COMPLEX FUNCTIONS An Algebraic and Geometric Viewpoint , 1988 .
[9] D. Hinrichsen,et al. Real and Complex Stability Radii: A Survey , 1990 .
[10] Frank Spitzer,et al. The Toeplitz Matrices of an Arbitrary Laurent Polynomial. , 1960 .
[11] A. Böttcher. Pseudospectra and Singular Values of Large Convolution Operators , 1994 .
[12] A. Böttcher,et al. Norms of Inverses, Spectra, and Pseudospectra of Large Truncated Wiener-Hopf Operators and Toeplitz Matrices , 1997 .
[13] Diederich Hinrichsen,et al. Spectral value sets: a graphical tool for robustness analysis , 1993 .
[14] A. Harrabi. Pseudospectres d'opérateurs intégraux et différentiels : application à la physique mathématique , 1998 .
[15] Mark Embree,et al. Infinite Toeplitz and Laurent matrices with localized impurities , 2002 .
[16] E. Gallestey,et al. Spectral value sets of closed linear operators , 2000, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[17] A. Böttcher,et al. Introduction to Large Truncated Toeplitz Matrices , 1998 .
[18] Spectral properties of random non-self-adjoint matrices and operators , 2000, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[19] David R. Nelson,et al. Vortex pinning and non-Hermitian quantum mechanics , 1997 .
[20] L. Trefethen,et al. Spectra, pseudospectra, and localization for random bidiagonal matrices , 2000, cond-mat/0003514.
[21] David R. Nelson,et al. NON-HERMITIAN LOCALIZATION AND POPULATION BIOLOGY , 1997, cond-mat/9708071.