An efficient algorithm for constructing minimal trellises for codes over finite Abelian groups

We present an efficient algorithm for computing the minimal trellis for a group code over a finite Abelian group, given a generator matrix for the code. We also show how to compute a succinct representation of the minimal trellis for such a code, and present algorithms that use this information to efficiently compute local descriptions of the minimal trellis. This extends the work of Kschischang and Sorokine (1995), who handled the case of linear codes over fields. An important application of our algorithms is to the construction of minimal trellises for lattices. A key step in our work is handling codes over cyclic groups C/sub p//spl alpha/, where p is a prime. Such a code can be viewed as a submodule over the ring Z/sub p//spl alpha/. Because of the presence of zero-divisors in the ring, submodules do not share the useful properties of vector spaces. We get around this difficulty by restricting the notion of linear combination to p-linear combination, and introducing the notion of a p-generator sequence, which enjoys properties similar to that of a generator matrix for a vector space.

[1]  Frank R. Kschischang,et al.  On the trellis structure of block codes , 1994, IEEE Trans. Inf. Theory.

[2]  Roberto Garello,et al.  Multilevel construction of block and trellis group codes , 1995, IEEE Trans. Inf. Theory.

[3]  Magnus Isaksson,et al.  Block-coded M-PSK modulation over GF(M) , 1993, IEEE Trans. Inf. Theory.

[4]  Sandro Zampieri,et al.  Dynamical systems and convolutional codes over finite Abelian groups , 1996, IEEE Trans. Inf. Theory.

[5]  Frank R. Kschischang The trellis structure of maximal fixed-cost codes , 1996, IEEE Trans. Inf. Theory.

[6]  Miles Reid,et al.  Commutative Ring Theory , 1989 .

[7]  L.,et al.  Minimal Trellises for Linear Block Codes and Their Duals , .

[8]  John G. Proakis,et al.  Digital Communications , 1983 .

[9]  G. David Forney,et al.  Dimension/length profiles and trellis complexity of linear block codes , 1994, IEEE Trans. Inf. Theory.

[10]  Frank R. Kschischang,et al.  Block coset codes for M-ary phase shift keying , 1989, IEEE J. Sel. Areas Commun..

[11]  Hans-Andrea Loeliger,et al.  Convolutional codes over groups , 1996, IEEE Trans. Inf. Theory.

[12]  Jr. G. Forney,et al.  Coset Codes-Part 11: Binary Lattices and Related Codes , 1988 .

[13]  G. Forney,et al.  Minimality and observability of group systems , 1994 .

[14]  Jack K. Wolf,et al.  Efficient maximum likelihood decoding of linear block codes using a trellis , 1978, IEEE Trans. Inf. Theory.

[15]  G. David Forney,et al.  Geometrically uniform codes , 1991, IEEE Trans. Inf. Theory.

[16]  Mitchell D. Trott,et al.  The dynamics of group codes: State spaces, trellis diagrams, and canonical encoders , 1993, IEEE Trans. Inf. Theory.

[17]  Gottfried Ungerboeck,et al.  Channel coding with multilevel/phase signals , 1982, IEEE Trans. Inf. Theory.

[18]  G. David Forney,et al.  Coset codes-I: Introduction and geometrical classification , 1988, IEEE Trans. Inf. Theory.

[19]  A. Vardy,et al.  On trellis complexity of block codes: lower bounds , 1995, Proceedings of 1995 IEEE International Symposium on Information Theory.

[20]  E. Biglieri,et al.  Construction of of Linear Block Codes Over Groups , 1993, Proceedings. IEEE International Symposium on Information Theory.

[21]  N. J. A. Sloane,et al.  The Z4-linearity of Kerdock, Preparata, Goethals, and related codes , 1994, IEEE Trans. Inf. Theory.

[22]  Alexander Vardy,et al.  Lower bounds on trellis complexity of block codes , 1995, IEEE Trans. Inf. Theory.

[23]  G. David Forney,et al.  Coset codes-II: Binary lattices and related codes , 1988, IEEE Trans. Inf. Theory.

[24]  Jan C. Willems,et al.  From time series to linear system - Part I. Finite dimensional linear time invariant systems , 1986, Autom..

[25]  Jr. G. Forney,et al.  The viterbi algorithm , 1973 .

[26]  B. Sundar Rajan,et al.  An efficient algorithm for constructing minimal trellises for codes over finite abelian groups , 1996, IEEE Trans. Inf. Theory.