BSL: An R Package for Efficient Parameter Estimation for Simulation-Based Models via Bayesian Synthetic Likelihood
暂无分享,去创建一个
[1] S. Wood. Statistical inference for noisy nonlinear ecological dynamic systems , 2010, Nature.
[2] David J. Nott,et al. Robust Bayesian synthetic likelihood via a semi-parametric approach , 2018, Stat. Comput..
[3] P. Moral,et al. Sequential Monte Carlo samplers , 2002, cond-mat/0212648.
[4] Anthony N. Pettitt,et al. Bayesian indirect inference using a parametric auxiliary model , 2015, 1505.03372.
[5] David T. Frazier,et al. Bayesian Synthetic Likelihood , 2017, 2305.05120.
[6] Yanan Fan,et al. Handbook of Approximate Bayesian Computation , 2018 .
[7] George Karabatsos,et al. On Bayesian Testing of Additive Conjoint Measurement Axioms Using Synthetic Likelihood , 2017, Psychometrika.
[8] David T. Frazier,et al. Bayesian Inference Using Synthetic Likelihood: Asymptotics and Adjustments , 2019, Journal of the American Statistical Association.
[9] Franck Jabot,et al. EasyABC: performing efficient approximate Bayesian computation sampling schemes using R , 2013 .
[10] Ritu Pahal. Efficient Implementation of AES , 2013 .
[11] David J. Nott,et al. Variational Bayes With Intractable Likelihood , 2015, 1503.08621.
[12] David T. Frazier,et al. Robust Approximate Bayesian Inference with Synthetic Likelihood , 2019 .
[13] Christopher C. Drovandi,et al. Variational Bayes with synthetic likelihood , 2016, Statistics and Computing.
[14] Dirk Eddelbuettel,et al. Seamless R and C++ Integration with Rcpp , 2013 .
[15] M. Plummer,et al. CODA: convergence diagnosis and output analysis for MCMC , 2006 .
[16] Christopher C. Drovandi,et al. Likelihood-free inference in high dimensions with synthetic likelihood , 2018, Comput. Stat. Data Anal..
[17] Katalin Csill'ery,et al. abc: an R package for approximate Bayesian computation (ABC) , 2011, 1106.2793.
[18] David I. Warton,et al. Penalized Normal Likelihood and Ridge Regularization of Correlation and Covariance Matrices , 2008 .
[19] Christophe Croux,et al. The Gaussian rank correlation estimator: robustness properties , 2010, Statistics and Computing.
[20] Richard G. Everitt. Bootstrapped synthetic likelihood , 2017, ArXiv.
[21] A. Kassambara. Visualization of a Correlation Matrix using 'ggplot2' , 2016 .
[22] Christopher C. Drovandi,et al. Accelerating Bayesian Synthetic Likelihood With the Graphical Lasso , 2019, Journal of Computational and Graphical Statistics.
[23] Corentin M Barbu,et al. Two‐scale dispersal estimation for biological invasions via synthetic likelihood , 2018, Ecography.
[24] Olivier François,et al. Non-linear regression models for Approximate Bayesian Computation , 2008, Stat. Comput..
[25] A. Izenman. Recent Developments in Nonparametric Density Estimation , 1991 .
[26] Dirk Eddelbuettel,et al. Rcpp: Seamless R and C++ Integration , 2011 .
[27] Jukka-Pekka Onnela,et al. ABCpy: A High-Performance Computing Perspective to Approximate Bayesian Computation. , 2017 .
[28] Alfred O. Hero,et al. $l_{0}$ Sparse Inverse Covariance Estimation , 2014, IEEE Transactions on Signal Processing.
[29] Ingram Olkin,et al. Unbiased Estimation of Some Multivariate Probability Densities and Related Functions , 1969 .
[30] P. V. Oorschot,et al. Efficient Implementation , 2022 .
[31] R. Tibshirani,et al. Sparse inverse covariance estimation with the graphical lasso. , 2008, Biostatistics.
[32] A. Doucet,et al. Efficient implementation of Markov chain Monte Carlo when using an unbiased likelihood estimator , 2012, 1210.1871.
[33] Tuo Zhao,et al. Sparse Inverse Covariance Estimation with Calibration , 2013, NIPS.