BSL: An R Package for Efficient Parameter Estimation for Simulation-Based Models via Bayesian Synthetic Likelihood

Bayesian synthetic likelihood (BSL) is a popular method for estimating the parameter posterior distribution for complex statistical models and stochastic processes that possess a computationally intractable likelihood function. Instead of evaluating the likelihood, BSL approximates the likelihood of a judiciously chosen summary statistic of the data via model simulation and density estimation. Compared to alternative methods such as approximate Bayesian computation (ABC), BSL requires little tuning and requires less model simulations than ABC when the chosen summary statistic is high-dimensional. The original synthetic likelihood relies on a multivariate normal approximation of the intractable likelihood, where the mean and covariance are estimated by simulation. An extension of BSL considers replacing the sample covariance with a penalised covariance estimator to reduce the number of required model simulations. Further, a semi-parametric approach has been developed to relax the normality assumption. In this paper, we present an R package called BSL that amalgamates the aforementioned methods and more into a single, easy-to-use and coherent piece of software. The R package also includes several examples to illustrate how to use the package and demonstrate the utility of the methods.

[1]  S. Wood Statistical inference for noisy nonlinear ecological dynamic systems , 2010, Nature.

[2]  David J. Nott,et al.  Robust Bayesian synthetic likelihood via a semi-parametric approach , 2018, Stat. Comput..

[3]  P. Moral,et al.  Sequential Monte Carlo samplers , 2002, cond-mat/0212648.

[4]  Anthony N. Pettitt,et al.  Bayesian indirect inference using a parametric auxiliary model , 2015, 1505.03372.

[5]  David T. Frazier,et al.  Bayesian Synthetic Likelihood , 2017, 2305.05120.

[6]  Yanan Fan,et al.  Handbook of Approximate Bayesian Computation , 2018 .

[7]  George Karabatsos,et al.  On Bayesian Testing of Additive Conjoint Measurement Axioms Using Synthetic Likelihood , 2017, Psychometrika.

[8]  David T. Frazier,et al.  Bayesian Inference Using Synthetic Likelihood: Asymptotics and Adjustments , 2019, Journal of the American Statistical Association.

[9]  Franck Jabot,et al.  EasyABC: performing efficient approximate Bayesian computation sampling schemes using R , 2013 .

[10]  Ritu Pahal Efficient Implementation of AES , 2013 .

[11]  David J. Nott,et al.  Variational Bayes With Intractable Likelihood , 2015, 1503.08621.

[12]  David T. Frazier,et al.  Robust Approximate Bayesian Inference with Synthetic Likelihood , 2019 .

[13]  Christopher C. Drovandi,et al.  Variational Bayes with synthetic likelihood , 2016, Statistics and Computing.

[14]  Dirk Eddelbuettel,et al.  Seamless R and C++ Integration with Rcpp , 2013 .

[15]  M. Plummer,et al.  CODA: convergence diagnosis and output analysis for MCMC , 2006 .

[16]  Christopher C. Drovandi,et al.  Likelihood-free inference in high dimensions with synthetic likelihood , 2018, Comput. Stat. Data Anal..

[17]  Katalin Csill'ery,et al.  abc: an R package for approximate Bayesian computation (ABC) , 2011, 1106.2793.

[18]  David I. Warton,et al.  Penalized Normal Likelihood and Ridge Regularization of Correlation and Covariance Matrices , 2008 .

[19]  Christophe Croux,et al.  The Gaussian rank correlation estimator: robustness properties , 2010, Statistics and Computing.

[20]  Richard G. Everitt Bootstrapped synthetic likelihood , 2017, ArXiv.

[21]  A. Kassambara Visualization of a Correlation Matrix using 'ggplot2' , 2016 .

[22]  Christopher C. Drovandi,et al.  Accelerating Bayesian Synthetic Likelihood With the Graphical Lasso , 2019, Journal of Computational and Graphical Statistics.

[23]  Corentin M Barbu,et al.  Two‐scale dispersal estimation for biological invasions via synthetic likelihood , 2018, Ecography.

[24]  Olivier François,et al.  Non-linear regression models for Approximate Bayesian Computation , 2008, Stat. Comput..

[25]  A. Izenman Recent Developments in Nonparametric Density Estimation , 1991 .

[26]  Dirk Eddelbuettel,et al.  Rcpp: Seamless R and C++ Integration , 2011 .

[27]  Jukka-Pekka Onnela,et al.  ABCpy: A High-Performance Computing Perspective to Approximate Bayesian Computation. , 2017 .

[28]  Alfred O. Hero,et al.  $l_{0}$ Sparse Inverse Covariance Estimation , 2014, IEEE Transactions on Signal Processing.

[29]  Ingram Olkin,et al.  Unbiased Estimation of Some Multivariate Probability Densities and Related Functions , 1969 .

[30]  P. V. Oorschot,et al.  Efficient Implementation , 2022 .

[31]  R. Tibshirani,et al.  Sparse inverse covariance estimation with the graphical lasso. , 2008, Biostatistics.

[32]  A. Doucet,et al.  Efficient implementation of Markov chain Monte Carlo when using an unbiased likelihood estimator , 2012, 1210.1871.

[33]  Tuo Zhao,et al.  Sparse Inverse Covariance Estimation with Calibration , 2013, NIPS.