Wide areas of the mountainous regions of Germany have rock covered by Pleistocene periglacial slope deposits (PPSD), formed by gelifluction during the cold periods of the ice ages in non-glaciated areas. The PPSD provide the parent material for soil development, and their physical characteristics affect several stabile soil properties. Because the PPSD play a significant ecological role, we studied the spatial distribution and properties of the PPSD in order to assess the distribution of the stabile soil properties. The high stone content of the PPSD greatly hinders augering and digging. Hence, we tested the use of ground-penetrating radar (GPR) as a potentially time-saving, non-destructive method to determine the thickness of the PPSD. In several study areas of the Rhenish Massif, GPR investigations of single soil profiles and soil transects along an exposed gas-pipeline ditch were carried out. The GPR images were compared to the actual thickness of the layers of the PPSD exposed in the profiles and the ditch. In the GPR images usually at least one distinct boundary could be identified, which occurs at the transition between the loose material and the hard rock, mostly ranging between 50 and 150 cm depth. In some cases, in which stone content changed abruptly between different layers of the PPSD, also the boundaries between these layers could be identified in the GPR image. On the other hand, in areas where remnants of the Mesozoic-Tertiary weathering mantle are preserved, the boundary between the saprolite and the overlying basal layer of the PPSD is ambiguous or not at all visible.
Einsatz von Georadar zur Bestimmung der Machtigkeit periglaziarer Lagen
In den deutschen Mittelgebirgen sind die Gesteine weitflachig von periglaziaren Lagen uberzogen. Diese entstanden durch Gelifluktion wahrend der Kaltzeiten in den unvergletscherten Bereichen. Sie stellen das Ausgangssubstrat der Bodenbildung dar und bestimmen eine Reihe stabiler Bodeneigenschaften. Die okologische Bedeutung der periglaziaren Lagen gab den Anlass, ihre Verbreitung und Eigenschaften zu erfassen, um daraus flachenhafte Aussagen uber diese Eigenschaften abzuleiten. Da Bohrungen und Grabungen in den periglaziaren Lagen haufig durch hohe Skelettgehalte erschwert werden, wurde untersucht, ob Georadar zur zeitsparenden, zerstorungsfreien Erfassung der Lagenmachtigkeiten eingesetzt werden kann. In verschiedenen Teilen des Rheinischen Schiefergebirges wurden Georadar-Messungen an Bodenprofilen sowie an Transekten entlang eines Gasleitungsgrabens durchgefuhrt, die jeweils mit den Machtigkeiten der periglaziaren Lagen verglichen wurden, die an der Graben- bzw. Profilwand aufgeschlossen waren. In den Radargrammen ist in der Regel mindestens eine deutliche Grenze zu erkennen. Diese tritt am Ubergang vom Lockermaterial zum Festgestein auf, der in der Regel zwischen 50 und 150 cm Tiefe liegt. In einigen Fallen, in denen sich der Skelettgehalt an den Lagengrenzen abrupt stark verandert, sind auch Grenzen zwischen verschiedenen Lagen im Radargramm zu erkennen. Dagegen ist in Gebieten, in denen Reste der mesozoisch-tertiaren Verwitterungsdecke im Untergrund anstehen, die Grenze zwischen der Basislage und dem Gestein im Radargramm nur diffus oder nicht ausgepragt.
[1]
James S. Mellett,et al.
Ground penetrating radar applications in engineering, environmental management, and geology
,
1995
.
[2]
E. J. Hickin,et al.
The internal structure of scrolled floodplain deposits based on ground-penetrating radar, North Thompson River, British Columbia
,
1997
.
[3]
J. Vandenberghe,et al.
Ground penetrating radar images of selected fluvial deposits in the Netherlands
,
1999
.
[4]
P. Felix‐Henningsen.
Mesozoic-Tertiary weathering and soil formation on slates of the Rhenish Massif, Germany
,
1994
.
[5]
Gerard B. M. Heuvelink,et al.
Mapping spatial variation in surface soil water content: comparison of ground-penetrating radar and time domain reflectometry
,
2002
.
[6]
M. C. Roberts,et al.
The radar signatures and age of periglacial slope deposits, Central Highlands of Germany
,
2001
.
[7]
B. Sternberg,et al.
Archaeology studies in southern Arizona using ground penetrating radar
,
1995
.
[8]
J. Doolittle,et al.
Using Ground-Penetrating Radar to Update Soil Survey Information
,
1988
.
[9]
R. Hall,et al.
Landform and Stratigraphic Influences on Variability of Loess Thickness in Northern Delaware
,
1989
.
[10]
David J. Daniels,et al.
Surface-Penetrating Radar
,
1996
.
[11]
P. Wolfe,et al.
Delineation of shallow stratigraphy using ground penetrating radar
,
1995
.
[12]
A. Kleber.
Cover-beds as soil parent materials in midlatitude regions
,
1997
.
[13]
Katsuo Sasahara,et al.
Application of GPR to detecting and mapping cracks in rock slopes
,
1995
.
[14]
R. Schaetzl,et al.
GROUND-PENETRATING RADAR STUDY OF ORTSTEIN CONTINUITY IN SOME MICHIGAN HAPLAQUODS
,
1990
.
[15]
G. Wessolek,et al.
Accuracy of soil water content measurements using ground penetrating radar: comparison of ground penetrating radar and lysimeter data
,
2002
.