Passivation of LTI systems

In this paper we consider a passivation procedure for linear time-invariant systems. This procedure is based on the spectral properties of related Hamiltonian matrices. We also present a structure-preserving algorithm for computing the imaginary eigenvalues and the corresponding eigenvectors of Hamiltonian matrices. Numerical examples are given.

[1]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[2]  S. Grivet-Talocia,et al.  On the generation of large passive macromodels for complex interconnect structures , 2006, IEEE Transactions on Advanced Packaging.

[3]  M. Vidyasagar Input-Output Analysis of Large-Scale Interconnected Systems: Decomposition, Well-Posedness, and Stability , 1981 .

[4]  S. Hammarling Numerical Solution of the Stable, Non-negative Definite Lyapunov Equation , 1982 .

[5]  B. Moore Principal component analysis in linear systems: Controllability, observability, and model reduction , 1981 .

[6]  Sabine Van Huffel,et al.  SLICOT—A Subroutine Library in Systems and Control Theory , 1999 .

[7]  V. Mehrmann,et al.  A new method for computing the stable invariant subspace of a real Hamiltonian matrix , 1997 .

[8]  Stefano Grivet-Talocia,et al.  Passivity enforcement via perturbation of Hamiltonian matrices , 2004, IEEE Transactions on Circuits and Systems I: Regular Papers.

[9]  Tatjana Stykel,et al.  Rational interpolation , minimal realization and model reduction , 2007 .

[10]  Charles R. Johnson,et al.  Topics in Matrix Analysis , 1991 .

[11]  Daniel Kressner,et al.  Numerical Methods for General and Structured Eigenvalue Problems , 2005, Lecture Notes in Computational Science and Engineering.

[12]  A. Semlyen,et al.  Rational approximation of frequency domain responses by vector fitting , 1999 .

[13]  R. Mavaddat Network Scattering Parameters , 1996, Advanced Series in Circuits and Systems.

[14]  J. H. Wilkinson The algebraic eigenvalue problem , 1966 .

[15]  Athanasios C. Antoulas,et al.  Approximation of Large-Scale Dynamical Systems , 2005, Advances in Design and Control.

[16]  Daniel Kressner,et al.  Algorithm 854: Fortran 77 subroutines for computing the eigenvalues of Hamiltonian matrices II , 2005, TOMS.

[17]  V. Mehrmann,et al.  A numerically stable, structure preserving method for computing the eigenvalues of real Hamiltonian or symplectic pencils , 1998 .

[18]  Stephen P. Boyd,et al.  A bisection method for computing the H∞ norm of a transfer matrix and related problems , 1989, Math. Control. Signals Syst..