SHARP: a distributed, GPU-based ptychographic solver

Ever brighter light sources, fast parallel detectors, and advances in phase retrieval methods, have made ptychography a practical and popular imaging technique. Compared to previous techniques, ptychography provides superior robustness and resolution at the expense of more advanced and time consuming data analysis. By taking advantage of massively parallel architectures, high-throughput processing can expedite this analysis and provide microscopists with immediate feedback. These advances allow real-time imaging at wavelength limited resolution, coupled with a large field of view. Here, we introduce a set of algorithmic and computational methodologies used at the Advanced Light Source, and DOE light sources packaged as a CUDA based software environment named SHARP (this http URL), aimed at providing state-of-the-art high-throughput ptychography reconstructions for the coming era of diffraction limited light sources.

[1]  P. Hawkes,et al.  Science of Microscopy , 2007 .

[2]  Zach DeVito,et al.  Opt , 2017 .

[3]  Keith A. Nugent,et al.  Ptychographic Fresnel Coherent Diffractive Imaging , 2009 .

[4]  Michael Eckert,et al.  Disputed discovery: the beginnings of X-ray diffraction in crystals in 1912 and its repercussions. , 2012, Acta crystallographica. Section A, Foundations of crystallography.

[5]  Manuel Guizar-Sicairos,et al.  Measurement of coherent x-ray focused beams by phase retrieval with transverse translation diversity. , 2009, Optics express.

[6]  P. Thibault,et al.  Maximum-likelihood refinement for coherent diffractive imaging , 2012 .

[7]  BERICHTE DER BUNSEN-GESELLSCHAFT,et al.  Berichte Der Bunsen-gesellschaft Fur Physikalische Chemie Jahresregister Von Band 90 (1986) Ichriftleiter Redaktion Beratergremium Backhaus-ricoult, M.: Diffusion Processes and Interphase Bound- Ary Morphology in Ternary Metal-ceramic Systems 684 — R. Dieckmann: Defects and Cat- Ion Diffusion in Mag , 2012 .

[8]  Andrew G. Glen,et al.  APPL , 2001 .

[9]  S Marchesini,et al.  Invited article: a [corrected] unified evaluation of iterative projection algorithms for phase retrieval. , 2006, The Review of scientific instruments.

[10]  J. Rodenburg,et al.  Noise models for low counting rate coherent diffraction imaging. , 2012, Optics express.

[11]  Christoph Rau,et al.  Sampling in x-ray ptychography , 2013 .

[12]  S. Marchesini,et al.  Dependence on Crystal Size of the Nanoscale Chemical Phase Distribution and Fracture in LixFePO₄. , 2015, Nano letters.

[13]  Siyuan Dong,et al.  Spectral multiplexing and coherent-state decomposition in Fourier ptychographic imaging. , 2014, Biomedical optics express.

[14]  James V. Burke,et al.  Optical Wavefront Reconstruction: Theory and Numerical Methods , 2002, SIAM Rev..

[15]  J. Rodenburg Ptychography and Related Diffractive Imaging Methods , 2008 .

[16]  Andreas Menzel,et al.  Probe retrieval in ptychographic coherent diffractive imaging. , 2009, Ultramicroscopy.

[17]  Peter Hawkes,et al.  Advances in Imaging and Electron Physics , 2002 .

[18]  J. Rodenburg,et al.  Information multiplexing in ptychography. , 2014, Ultramicroscopy.

[19]  R. Horstmeyer,et al.  Wide-field, high-resolution Fourier ptychographic microscopy , 2013, Nature Photonics.

[20]  J. Marrison,et al.  Ptychography – a label free, high-contrast imaging technique for live cells using quantitative phase information , 2013, Scientific Reports.

[21]  Atsushi Momose,et al.  Phase–contrast X–ray computed tomography for observing biological soft tissues , 1996, Nature Medicine.

[22]  Stephen J. Wright,et al.  An asynchronous parallel stochastic coordinate descent algorithm , 2013, J. Mach. Learn. Res..

[23]  James R. Fienup,et al.  Measurement of hard x-ray lens wavefront aberrations using phase retrieval , 2011 .

[24]  W. Hoppe Beugung im inhomogenen Primärstrahlwellenfeld. I. Prinzip einer Phasenmessung von Elektronenbeungungsinterferenzen , 1969 .

[25]  B. C. McCallum,et al.  Resolution beyond the 'information limit' in transmission electron microscopy , 1995, Nature.

[26]  David A. Shapiro,et al.  Soft x-ray ptychography studies of nanoscale magnetic and structural correlations in thin SmCo5 films , 2016 .

[27]  Franz Pfeiffer,et al.  Near-field ptychography: phase retrieval for inline holography using a structured illumination , 2013, Scientific Reports.

[28]  J R Fienup,et al.  Phase retrieval algorithms: a comparison. , 1982, Applied optics.

[29]  Gunther Uhlmann,et al.  Inverse Problems and Applications: Inside Out II , 2013 .

[30]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[31]  O. Bunk,et al.  High-Resolution Scanning X-ray Diffraction Microscopy , 2008, Science.

[32]  Andrew G. Peele,et al.  Simultaneous sample and spatial coherence characterisation using diffractive imaging , 2011 .

[33]  Garth J. Williams,et al.  Keyhole coherent diffractive imaging , 2008 .

[34]  Shoham Sabach,et al.  Proximal Heterogeneous Block Implicit-Explicit Method and Application to Blind Ptychographic Diffraction Imaging , 2015, SIAM J. Imaging Sci..

[36]  J. H. Seldin,et al.  Hubble Space Telescope characterized by using phase-retrieval algorithms. , 1993, Applied optics.

[37]  S. Marchesini,et al.  Iterative Algorithms for Ptychographic Phase Retrieval , 2011, 1105.5628.

[38]  Sebastian Schöder,et al.  Full optical characterization of coherent x-ray nanobeams by ptychographic imaging. , 2011, Optics express.

[39]  IEEE TRANSACTIONS ON CORE VLSI IEEE TRANSACTIONS ON IMAGE PROCESSING IEEE TRANSACTIONS ON DIGITAL SYSTEM DESIGN IEEE TRANSACTIONS ON TESTING IEEE TRANSACTIONS ON COMMUNICATION IEEE TRANSACTIONS ON LOW POWER VLSI , 2010 .

[40]  J. Rodenburg,et al.  An annealing algorithm to correct positioning errors in ptychography. , 2012, Ultramicroscopy.

[41]  Bob Nagler,et al.  Full spatial characterization of a nanofocused x-ray free-electron laser beam by ptychographic imaging , 2013, Scientific Reports.

[42]  Journal of the Optical Society of America , 1950, Nature.

[43]  Joshua W. Shaevitz,et al.  Massively parallel X-ray holography , 2008 .

[44]  O. Bunk,et al.  Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources , 2006 .

[45]  Howard A. Padmore,et al.  Soft X‐ray Ptychographic Imaging and Morphological Quantification of Calcium Silicate Hydrates (C–S–H) , 2015 .

[46]  J. Miao,et al.  Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens , 1999, Nature.

[47]  J. Fienup,et al.  Phase retrieval with transverse translation diversity: a nonlinear optimization approach. , 2008, Optics express.

[48]  Sang Chul Lee,et al.  Electrode Lithiation: Effects of Particle Size, Electronic Connectivity, and Incoherent Nanoscale Domains on the Sequence of Lithiation in LiFePO4 Porous Electrodes (Adv. Mater. 42/2015) , 2015, Advanced materials.

[49]  A. Fannjiang,et al.  Phase retrieval with random phase illumination. , 2012, Journal of the Optical Society of America. A, Optics, image science, and vision.

[50]  Heinz H. Bauschke,et al.  Phase retrieval, error reduction algorithm, and Fienup variants: a view from convex optimization. , 2002, Journal of the Optical Society of America. A, Optics, image science, and vision.

[51]  Alessandro Foi,et al.  Optimal Inversion of the Generalized Anscombe Transformation for Poisson-Gaussian Noise , 2013, IEEE Transactions on Image Processing.

[52]  W. Hoppe,et al.  Dynamische Theorie der Kristallstrukturanalyse durch Elektronenbeugung im inhomogenen Primärstrahlwellenfeld , 1970 .

[53]  Patrick P. Naulleau,et al.  Ptychographic wavefront sensor for high-NA EUV inspection and exposure tools , 2014, Advanced Lithography.

[54]  F. Maia The Coherent X-ray Imaging Data Bank , 2012, Nature Methods.

[55]  Franz Pfeiffer,et al.  Ptychographic characterization of the wavefield in the focus of reflective hard X-ray optics. , 2010, Ultramicroscopy.

[56]  A. Rosenhahn,et al.  Drift correction in ptychographic diffractive imaging. , 2013, Ultramicroscopy.

[57]  Hau-Tieng Wu,et al.  Rank-1 accelerated illumination recovery in scanning diffractive imaging by transparency estimation. , 2014, 1408.1922.

[58]  Stefano Marchesini,et al.  Phase retrieval and saddle-point optimization. , 2006, Journal of the Optical Society of America. A, Optics, image science, and vision.

[59]  Yonina C. Eldar,et al.  Phase Retrieval via Matrix Completion , 2013, SIAM J. Imaging Sci..

[60]  S. Marchesini,et al.  Chemical composition mapping with nanometre resolution by soft X-ray microscopy , 2014, Nature Photonics.

[61]  S. Marchesini,et al.  Invited article: a [corrected] unified evaluation of iterative projection algorithms for phase retrieval. , 2006, The Review of scientific instruments.

[62]  Alexandre d'Aspremont,et al.  Phase recovery, MaxCut and complex semidefinite programming , 2012, Math. Program..

[63]  James R Fienup,et al.  Phase retrieval with signal bias. , 2009, Journal of the Optical Society of America. A, Optics, image science, and vision.

[64]  K. Nugent,et al.  Diffractive imaging using partially coherent x rays. , 2009, Physical review letters.

[65]  Tom Peterka,et al.  Parallel ptychographic reconstruction. , 2014, Optics express.

[66]  H. Chapman Phase-retrieval X-ray microscopy by Wigner-distribution deconvolution , 1996 .

[67]  F. J. Anscombe,et al.  THE TRANSFORMATION OF POISSON, BINOMIAL AND NEGATIVE-BINOMIAL DATA , 1948 .

[68]  Chao Yang,et al.  Alternating direction methods for classical and ptychographic phase retrieval , 2012 .

[69]  Chao Yang,et al.  Augmented projections for ptychographic imaging , 2012, 1209.4924.

[70]  Kannan Ramchandran,et al.  Multiplexed coded illumination for Fourier Ptychography with an LED array microscope. , 2014, Biomedical optics express.