NANOS2 is a sequence-specific mRNA-binding protein that promotes transcript degradation in spermatogonial stem cells

[1]  D. Sabatini,et al.  mTOR at the nexus of nutrition, growth, ageing and disease , 2020, Nature Reviews Molecular Cell Biology.

[2]  Veronika A. Herzog,et al.  Quantification of experimentally induced nucleotide conversions in high-throughput sequencing datasets , 2019, BMC Bioinform..

[3]  T. Duchaine,et al.  Ciphers and Executioners: How 3′-Untranslated Regions Determine the Fate of Messenger RNAs , 2019, Front. Genet..

[4]  N. Serra,et al.  The mTORC1 component RPTOR is required for maintenance of the foundational spermatogonial stem cell pool in mice† , 2018, Biology of Reproduction.

[5]  D. Tollervey,et al.  Tailing Off: PABP and CNOT Generate Cycles of mRNA Deadenylation. , 2018, Molecular cell.

[6]  Y. Saeys,et al.  Nanos genes and their role in development and beyond , 2018, Cellular and Molecular Life Sciences.

[7]  Jernej Ule,et al.  Advances in CLIP Technologies for Studies of Protein-RNA Interactions. , 2018, Molecular cell.

[8]  Delong Meng,et al.  mTOR signaling in stem and progenitor cells , 2018, Development.

[9]  Johannes Zuber,et al.  Thiol-linked alkylation of RNA to assess expression dynamics , 2017, Nature Methods.

[10]  V. Beneš,et al.  mRNA 3′ uridylation and poly(A) tail length sculpt the mammalian maternal transcriptome , 2017, Nature.

[11]  N. Serra,et al.  Cell-autonomous requirement for mammalian target of rapamycin (Mtor) in spermatogonial proliferation and differentiation in the mouse , 2017, Biology of Reproduction.

[12]  Rob Patro,et al.  Salmon provides fast and bias-aware quantification of transcript expression , 2017, Nature Methods.

[13]  F. Sablitzky,et al.  ID4 levels dictate the stem cell state in mouse spermatogonia , 2017, Development.

[14]  A. Trumpp,et al.  Myc/Mycn-mediated glycolysis enhances mouse spermatogonial stem cell self-renewal , 2016, Genes & development.

[15]  Fidel Ramírez,et al.  deepTools2: a next generation web server for deep-sequencing data analysis , 2016, Nucleic Acids Res..

[16]  M. Kanatsu-Shinohara,et al.  ROS-Generating Oxidase Nox3 Regulates the Self-Renewal of Mouse Spermatogonial Stem Cells1 , 2015, Biology of reproduction.

[17]  S. Yoshida,et al.  Hierarchical differentiation competence in response to retinoic acid ensures stem cell maintenance during mouse spermatogenesis , 2015, Development.

[18]  Pietro Liò,et al.  The BioMart community portal: an innovative alternative to large, centralized data repositories , 2015, Nucleic Acids Res..

[19]  P. Pandolfi,et al.  Distinct germline progenitor subsets defined through Tsc2–mTORC1 signaling , 2015, EMBO reports.

[20]  Matthew E. Ritchie,et al.  limma powers differential expression analyses for RNA-sequencing and microarray studies , 2015, Nucleic acids research.

[21]  Bryan A. Niedenberger,et al.  Retinoic acid regulates Kit translation during spermatogonial differentiation in the mouse. , 2015, Developmental biology.

[22]  V. Popova,et al.  Methods to study the RNA-protein interactions , 2015, Molecular Biology.

[23]  Paul Theodor Pyl,et al.  HTSeq—a Python framework to work with high-throughput sequencing data , 2014, bioRxiv.

[24]  Marco Y. Hein,et al.  Accurate Proteome-wide Label-free Quantification by Delayed Normalization and Maximal Peptide Ratio Extraction, Termed MaxLFQ * , 2014, Molecular & Cellular Proteomics.

[25]  C. Bieberich,et al.  Functional and molecular features of the Id4+ germline stem cell population in mouse testes , 2014, Genes & development.

[26]  H. Enomoto,et al.  Mouse Spermatogenic Stem Cells Continually Interconvert between Equipotent Singly Isolated and Syncytial States , 2014, Cell stem cell.

[27]  C. Geyer,et al.  Retinoic Acid Induces Multiple Hallmarks of the Prospermatogonia-to-Spermatogonia Transition in the Neonatal Mouse1 , 2014, Biology of reproduction.

[28]  Andreas Krämer,et al.  Causal analysis approaches in Ingenuity Pathway Analysis , 2013, Bioinform..

[29]  Y. Saga,et al.  NANOS2 promotes male germ cell development independent of meiosis suppression. , 2014, Developmental biology.

[30]  Y. Saga,et al.  MEK/ERK signaling directly and indirectly contributes to the cyclical self‐renewal of spermatogonial stem cells , 2013, Stem cells.

[31]  M. Kanatsu-Shinohara,et al.  Spermatogonial stem cell self-renewal and development. , 2013, Annual review of cell and developmental biology.

[32]  J. Asara,et al.  Stimulation of de Novo Pyrimidine Synthesis by Growth Signaling Through mTOR and S6K1 , 2013, Science.

[33]  Thomas R. Gingeras,et al.  STAR: ultrafast universal RNA-seq aligner , 2013, Bioinform..

[34]  C. Dieterich,et al.  FLEXBAR—Flexible Barcode and Adapter Processing for Next-Generation Sequencing Platforms , 2012, Biology.

[35]  Julian König,et al.  Analysis of CLIP and iCLIP methods for nucleotide-resolution studies of protein-RNA interactions , 2012, Genome Biology.

[36]  Luís Rato,et al.  Metabolic regulation is important for spermatogenesis , 2012, Nature Reviews Urology.

[37]  T. Bailey,et al.  Inferring direct DNA binding from ChIP-seq , 2012, Nucleic acids research.

[38]  D. Sabatini,et al.  mTOR Signaling in Growth Control and Disease , 2012, Cell.

[39]  Hongyu Zhao,et al.  Pumilio 1 Suppresses Multiple Activators of p53 to Safeguard Spermatogenesis , 2012, Current Biology.

[40]  J. Ule,et al.  Protein–RNA interactions: new genomic technologies and perspectives , 2012, Nature Reviews Genetics.

[41]  Anton J. Enright,et al.  The endonuclease activity of Mili fuels piRNA amplification that silences LINE1 elements , 2011, Nature.

[42]  D. Castrillon,et al.  Foxo1 is required in mouse spermatogonial stem cells for their maintenance and the initiation of spermatogenesis. , 2011, The Journal of clinical investigation.

[43]  Timothy L. Bailey,et al.  Gene expression Advance Access publication May 4, 2011 DREME: motif discovery in transcription factor ChIP-seq data , 2011 .

[44]  Philip Machanick,et al.  MEME-ChIP: motif analysis of large DNA datasets , 2011, Bioinform..

[45]  S. Rafii,et al.  Plzf Regulates Germline Progenitor Self-Renewal by Opposing mTORC1 , 2010, Cell.

[46]  A. Hyman,et al.  Quantitative proteomics combined with BAC TransgeneOmics reveals in vivo protein interactions , 2010, The Journal of cell biology.

[47]  R. Braun,et al.  Functional Hierarchy and Reversibility Within the Murine Spermatogenic Stem Cell Compartment , 2010, Science.

[48]  Yumiko Saga,et al.  The RNA-Binding Protein NANOS2 Is Required to Maintain Murine Spermatogonial Stem Cells , 2009, Science.

[49]  David Tollervey,et al.  Identification of protein binding sites on U3 snoRNA and pre-rRNA by UV cross-linking and high-throughput analysis of cDNAs , 2009, Proceedings of the National Academy of Sciences.

[50]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[51]  Y. Saga,et al.  Nanos2 suppresses meiosis and promotes male germ cell differentiation. , 2008, Genes & development.

[52]  R. Brinster,et al.  Glial Cell Line-derived Neurotrophic Factor Regulation of Genes Essential for Self-renewal of Mouse Spermatogonial Stem Cells Is Dependent on Src Family Kinase Signaling* , 2007, Journal of Biological Chemistry.

[53]  S. Toyokuni,et al.  Akt mediates self-renewal division of mouse spermatogonial stem cells , 2007, Development.

[54]  J. Steitz,et al.  Evidence for reassociation of RNA-binding proteins after cell lysis: implications for the interpretation of immunoprecipitation analyses. , 2004, RNA.

[55]  Philippe Soriano,et al.  Widespread recombinase expression using FLPeR (Flipper) mice , 2000, Genesis.

[56]  M. Dym,et al.  Stem Cell Factor/c-kit Up-regulates Cyclin D3 and Promotes Cell Cycle Progression via the Phosphoinositide 3-Kinase/p70 S6 Kinase Pathway in Spermatogonia* , 2000, The Journal of Biological Chemistry.

[57]  M. Saarma,et al.  Regulation of cell fate decision of undifferentiated spermatogonia by GDNF. , 2000, Science.

[58]  R. Wharton,et al.  Recruitment of Nanos to hunchback mRNA by Pumilio. , 1999, Genes & development.

[59]  R. Wharton,et al.  Binding of pumilio to maternal hunchback mRNA is required for posterior patterning in drosophila embryos , 1995, Cell.

[60]  A Klug,et al.  Selection of DNA binding sites for zinc fingers using rationally randomized DNA reveals coded interactions. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[61]  C. Huckins The spermatogonial stem cell population in adult rats. I. Their morphology, proliferation and maturation , 1971, The Anatomical record.

[62]  E. Oakberg Spermatogonial stem‐cell renewal in the mouse , 1971, The Anatomical record.